Skip to main content
Book cover

Complexity of Lattice Problems

A Cryptographic Perspective

  • Book
  • © 2002

Overview

Part of the book series: The Springer International Series in Engineering and Computer Science (SECS, volume 671)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De­ spite their apparent simplicity, lattices hide a rich combinatorial struc­ ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap­ plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.

Authors and Affiliations

  • University of California, San Diego, USA

    Daniele Micciancio

  • The Massachusetts Institute of Technology, Cambridge, USA

    Shafi Goldwasser

Bibliographic Information

Publish with us