Skip to main content

Cryogenic Operation of Silicon Power Devices

  • Book
  • © 1998

Overview

Part of the book series: Power Electronics and Power Systems (PEPS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

The advent of low temperature superconductors in the early 1960's converted what had been a laboratory curiosity with very limited possibilities to a prac­ tical means of fabricating electrical components and devices with lossless con­ ductors. Using liquid helium as a coolant, the successful construction and operation of high field strength magnet systems, alternators, motors and trans­ mission lines was announced. These developments ushered in the era of what may be termed cryogenic power engineering and a decade later successful oper­ ating systems could be found such as the 5 T saddle magnet designed and built in the United States by the Argonne National Laboratory and installed on an experimental power generating facility at the High Temperature Institute in Moscow, Russia. The field of digital computers provided an incentive of a quite different kind to operate at cryogenic temperatures. In this case, the objective was to ob­ tain higher switching speeds than are possible at ambient temperatures with the critical issue being the operating characteristics of semiconductor switches under cryogenic conditions. By 1980, cryogenic electronics was established as another branch of electric engineering.

Authors and Affiliations

  • Power Semiconductor Research Center, North Carolina State University, Raleigh, USA

    Ranbir Singh, B. Jayant Baliga

Bibliographic Information

Publish with us