Skip to main content

Adaptive Resonance Theory Microchips

Circuit Design Techniques

  • Book
  • © 1998

Overview

Part of the book series: The Springer International Series in Engineering and Computer Science (SECS, volume 456)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

Adaptive Resonance Theory Microchips describes circuit strategies resulting in efficient and functional adaptive resonance theory (ART) hardware systems. While ART algorithms have been developed in software by their creators, this is the first book that addresses efficient VLSI design of ART systems. All systems described in the book have been designed and fabricated (or are nearing completion) as VLSI microchips in anticipation of the impending proliferation of ART applications to autonomous intelligent systems. To accommodate these systems, the book not only provides circuit design techniques, but also validates them through experimental measurements. The book also includes a chapter tutorially describing four ART architectures (ART1, ARTMAP, Fuzzy-ART and Fuzzy-ARTMAP) while providing easily understandable MATLAB code examples to implement these four algorithms in software. In addition, an entire chapter is devoted to other potential applications for real-time data clustering and category learning.

Authors and Affiliations

  • National Microelectronics Center, Sevilla, Spain

    Teresa Serrano-Gotarredona, Bernabé Linares-Barranco

  • The Johns Hopkins University, USA

    Andreas G. Andreou

Bibliographic Information

Publish with us