Skip to main content

Environmental Radiation Effects on Mammals

A Dynamical Modeling Approach

  • Book
  • © 2010

Overview

  • Wide ranging study of fundamental problems in radiation biology (namely, acute/chronic effects of irradiation from exposure such as in the space environment on vital body systems, on whole organisms, and on mammalian populations) using mathematical modeling
  • Wide practical use in radiation risk assessment by space agencies and aerospace companies, among others
  • Can be used as a basis for a lecture course on mathematical modeling in radiation biology and ecology
  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

Themonographisdevotedtothetheoreticalstudiesofradiationeffectsonmammals. It summarizes the results obtained by the author over the past 30 years, most of them being of high priority. In the course of these studies, a single approach to the modeling of radiation effects on mammals has been elaborated. Speci?cally, in the framework of the developed deterministic mathematical models, the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems (hematopoiesis, small intestine, and humoral immunity), as well as on the development of autoimmune diseases, are investigated. The radiation effects on the mortality dynamics in homogeneous and nonhomogeneous(in radiosensitivity) mammalian populations are also studied by making use of the developed stochastic models. The most appealing feature of these mortality models consists of the fact that they account for the intrinsic properties of the exposed organism. Namely, within these models the stochastic biometrical functions are calculated proceeding from statistical characteristics and dynamics of the respective critical body system (hematopoiesis or small intestine). The performed theoretical investigations contribute to the development of the system and quantitative approaches in radiation biology and ecology. These studies elucidate the major regulatory mechanisms of the damage and recovery processes running in the vital body systems of exposed mammals and reveal the key par- eters characterizing the processes.

Authors and Affiliations

  • Research Centre of Spacecraft, Radiation Safety of the Health, Ministry of Russia, Moskva, Russian Federation

    Olga A. Smirnova

About the author

Dr. Olga Andreevna Smirnova is currently a physicist and researcher at the Federal State Unitary Enterprise Research and Technical Center of Radiation-Chemical Safety and Hygiene, Moscow, Russia. She received her Doctor of Physical and Mathematical Sciences degree from Moscow State University, Russia. Dr. Smirnova's fields of study and expertise are modeling the dynamics of various biological systems in mammals exposed to acute/chronic radiation. Dr. Smirnova is associate member of the Scientific Commision F (Life Sciences as Related to Space) of Committee on Space Research (COSPAR). She has authored over 140 articles published in scientific journals and scientific monographs in the fields of mathematical modeling, biophysics, and space science.

Bibliographic Information

Publish with us