Skip to main content

Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance

  • Book
  • © 2001

Overview

Part of the book series: NATO Science Series E: (NSSE, volume 374)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (19 chapters)

  1. Structure And Properties

  2. Processing

  3. Properties, Applications and New Directions

Keywords

About this book

Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the fullerene molecules, C , are the strongest covalent bonds possible. This strong covalent bonding 60 leads to some exceptional intrinsic properties, examples ofwhich are: the greatest Young's modulus (in diamond, within the graphite plane and in single­ walled nanotubes) the highest room temperature thermal conductivity (in diamond and within the graphite plane) high hole mobility in doped diamond exceptional thermal stability ofthe structure in graphite It is because of the extreme thermal stability that such a wide range of materials is available. Atomic mobilities are low at all but the highest temperatures. Sintering, melting and casting ofcarbon are not feasible processing operations and carbon/graphite components are exclusively produced from the pyrolytic decomposition of organic precursors. The vast majority of engineering carbons have Sp2 type bonding and are related in some way to the structure of graphite. In the c-direction the bonding in graphite is of van der Waals character with the result that graphite is highly anisotropic in its properties and is probably unique in showing both the highest and lowest bond strengths in different directions in the same crystal.

Editors and Affiliations

  • Department of Materials, School of Process, Environmental and Materials Engineering, University of Leeds, UK

    B. Rand, S. P. Appleyard

  • Chemical Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey

    M. F. Yardim

Bibliographic Information

Publish with us