Skip to main content
Book cover

The Sticky Synapse

Cell Adhesion Molecules and Their Role in Synapse Formation and Maintenance

  • Book
  • © 2009

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (21 chapters)

Keywords

About this book

The molecular mechanisms, which are responsible for the functional differences between the various types of neuronal synapses, have become one of the central themes of modern neurobiology. It is becoming increasingly clear that a misregulation of synaptogenesis and synaptic remodeling and dysfunctional neuronal synapses are at the heart of several human diseases, both neurological disorders and psychiatric conditions. As synapses present specialized cellular junctions between neurons and their target cells, it may not come as a surprise that neural cell adhesion molecules (CAMs) are of special importance for the genesis and the maintenance of synaptic connections. Genes encoding adhesive molecules make up a significant portion of the human genome, and neural CAMs even have been postulated to be a major factor in the evolution of the human brain. These are just some of the many reasons why we thought a book on neural CAMs and their role in establishing and maintaining neuronal synapses would be highly appropriate for summarizing our current state of knowledge. Without question, over the near future, additional adhesive proteins will join the ranks of synaptic CAMs and our knowledge, and how these molecules enable neurons and their targets to communicate effectively will grow.

About the authors

Dr. Michael Hortsch holds a Diploma degree in Biochemistry from the Free University Berlin and a Ph.D. in Biology from the University of Heidelberg in Germany. While working at the Weizmann Institute in Israel, the European Molecular Biology Laboratory in Heidelberg, and at the University of California at Berkeley he has published on topics such as the mechanism of growth factor receptor activation, the transport of proteins across membranes, and the physiological roles of neuronal cell adhesion molecules during nervous system development. He has been a faculty member of the Department of Cell and Developmental Biology at the University of Michigan in Ann Arbor since 1991. Dr. Hortsch has served on scientific review panels for the National Institutes of Health, the National Science Foundation, and other agencies.

 

Dr. Hisashi Umemori is a faculty member of the Molecular and Behavioral Neuroscience Institute and of the Department of Biological Chemistry at the University of Michigan Medical School. He worked with Dr. Tadashi Yamamoto at the Institute of Medical Sciences of the University of Tokyo and analyzed intracellular signaling mechanisms that are involved in myelination and in learning and memory. While working with Dr. Joshua R. Sanes at Washington University Medical School and at Harvard University, he identified synaptic organizing molecules that promote synapse formation during nervous system development. Dr. Umemori has received various awards, including a Basil O'Connor Award and a Klingenstein Fellowship Award.

 

 

Bibliographic Information

  • Book Title: The Sticky Synapse

  • Book Subtitle: Cell Adhesion Molecules and Their Role in Synapse Formation and Maintenance

  • Editors: Hisashi Umemori, Michael Hortsch

  • DOI: https://doi.org/10.1007/978-0-387-92708-4

  • Publisher: Springer New York, NY

  • eBook Packages: Biomedical and Life Sciences, Biomedical and Life Sciences (R0)

  • Copyright Information: Springer-Verlag New York 2009

  • Hardcover ISBN: 978-0-387-92707-7Published: 08 July 2009

  • Softcover ISBN: 978-1-4899-8289-6Published: 11 September 2014

  • eBook ISBN: 978-0-387-92708-4Published: 07 June 2009

  • Edition Number: 1

  • Number of Pages: XII, 453

  • Topics: Neurosciences, Neurobiology, Neurology, Developmental Biology, Cell Biology

Publish with us