Skip to main content

Nanometer Technology Designs

High-Quality Delay Tests

  • Book
  • © 2008

Overview

  • Identifies defects in traditional at-speed test methods
  • Proposes new techniques and methodologes to improve the overall quality of transition fault tests
  • Includes discussion of the effects of IR-drop
  • Provides an introduction to path delay and transition delay fault models and test methods
  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

Adopting new fabrication technologies not only provides higher integration and enhances performance, but also increases the types of manufacturing defects. With design size in millions of gates and working frequency in GHz timing-related defects havv become a high proportion of the total chip defects. For nanometer technology designs, the stuck-at fault test alone cannot ensure a high quality level of chips. At-speed tests using the transition fault model has become a requirement in technologies below 180nm.

Traditional at-speed test methods cannot guarantee high quality test results as they face many new challenges. Supply noise (including IR-drop, ground bounce, and Ldi/dt) effects on chip performance, high test pattern volume, low fault/defect coverage, small delay defect test pattern generation, high cost of test implementation and application, and utilizing low-cost testers are among these challenges. This book discusses these challenges in detail and proposes new techniques and methodologies to improve the overall quality of the transition fault test.

Authors and Affiliations

  • Electrical and Computer Engineering, University of Connecticut, Storrs, USA

    Mohammad Tehranipoor

  • Texas Instruments, Austin, USA

    Nisar Ahmed

Bibliographic Information

Publish with us