Skip to main content
Book cover

Introduction to Numerical Methods in Differential Equations

  • Textbook
  • © 2007

Overview

  • Over 100 illustrations
  • Numerous exercise sets, MATLAB computer codes (for both students and instructors), instructor overheads, and movies included
  • Includes supplementary material: sn.pub/extras

Part of the book series: Texts in Applied Mathematics (TAM, volume 52)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

The title gives a reasonable ?rst-order approximation to what this book is about. To explain why, let’s start with the expression “di?erential equations.” These are essential in science and engineering, because the laws of nature t- ically result in equations relating spatial and temporal changes in one or more variables.Todevelopanunderstandingofwhatisinvolvedin?ndingsolutions, the book begins with problems involving derivatives for only one independent variable, and these give rise to ordinary di?erential equations. Speci?cally, the ?rst chapter considers initial value problems (time derivatives), and the second concentrates on boundary value problems (space derivatives). In the succeeding four chapters problems involving both time and space derivatives, partial di?erential equations, are investigated. This brings us to the next expression in the title: “numerical methods.” This is a book about how to transform differential equations into problems that can be solved using a computer.The fact is that computers are only able to solve discrete problems and generally do this using ?nite-precision arithmetic. What this means is that in deriving and then using a numerical algorithmthecorrectnessofthediscreteapproximationmustbeconsidered,as must the consequences of round-o? error in using ?oating-point arithmetic to calculatetheanswer.Oneoftheinterestingaspectsofthesubjectisthatwhat appears to be an obviously correct numerical method can result in complete failure. Consequently, although the book concentrates on the derivation and use of numerical methods, the theoretical underpinnings are also presented andusedinthedevelopment.

Editors and Affiliations

  • Academic Science of the Material Science and Engineering, Rensselaer Polytechnic Institute, Troy

    Mark H. Holmes

About the editor





Bibliographic Information

Publish with us