Skip to main content
Book cover

CryptoGraphics

Exploiting Graphics Cards For Security

  • Book
  • © 2006

Overview

  • Describes unique approach for disabling spyware
  • Explores the use of a Graphics Processing Unit (GPU) as a trusted system component
  • Provides a detailed description and code for a GPU-based implementation of the AES
  • Highly-regarded in this new research area, Debra Cook was an invited speaker at the 2005 RSA Conference, Cryptographers’ Track
  • Includes supplementary material: sn.pub/extras

Part of the book series: Advances in Information Security (ADIS, volume 20)

  • 2797 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

Software that covertly monitors user actions, also known as spyware, has become a first-level security threat due to its ubiquity and the difficulty of detecting and removing it. This is especially so for video conferencing, thin-client computing and Internet cafes.

CryptoGraphics: Exploiting Graphics Cards for Security explores the potential for implementing ciphers within GPUs, and describes the relevance of GPU-based encryption to the security of applications involving remote displays. As the processing power of GPUs increases, research involving the use of GPUs for general purpose computing has arisen. This work extends such research by considering the use of a GPU as a parallel processor for encrypting data. The authors evaluate the operations found in symmetric and asymmetric key ciphers to determine if encryption can be programmed in existing GPUs. A detailed description for a GPU based implementation of AES is provided. The feasibility of GPU-based encryption allows the authors to explore the use of a GPU as a trusted system component. Unencrypted display data can be confined to the GPU to avoid exposing it to any malware running on the operating system.

Authors and Affiliations

  • Department of Computer Science 450 Computer Science Building, Columbia University, New York

    Debra L. Cook, Angelos D. Keromytis

About the authors

An invited speaker at the 2005 RSA Conference, Cryptographers’ Track, Debra Cook is a Ph.D. student in computer science at Columbia University in New York. Her research interests are focused in applied cryptography. She has a B.S. and M.S.E. in mathematical sciences from the Johns Hopkins University and an M.S. in computer science from Columbia. After graduating from Johns Hopkins, she was a senior technical staff member at Bell Labs and AT&T Labs before pursuing her Ph.D.

Angelos Keromytis is an Assistant Professor of Computer Science at Columbia University. His research interests include design and analysis of network and cryptographic protocols, software security and reliability, and operating system design. He received his Ph.D. in Computer Science from the University of Pennsylvania, and his B.S. in Computer Science from the University of Crete in Greece.

Bibliographic Information

Publish with us