Springer Series in Advanced Microelectronics

Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits

Authors: Wirnshofer, Martin

  • Of interest to researchers and professionals from the Electrical Engineering, Computer Science and Applied Physics communities
  • First comprehensive textbook on adaptive voltage scaling (AVS) by means of in-situ delay monitoring 
  • Provides theoretical and practical background on the implementation of in-situ delay monitors
  • Includes a compendium of state-of-the-art dynamic and adaptive voltage scaling techniques
  • A special chapter on the extensive impact of variations at shrinking technology nodes
see more benefits

Buy this book

eBook $119.00
price for USA (gross)
  • ISBN 978-94-007-6196-4
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $159.00
price for USA
  • ISBN 978-94-007-6195-7
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Rent the ebook  
  • Rental duration: 1 or 6 month
  • low-cost access
  • online reader with highlighting and note-making option
  • can be used across all devices
About this book

Increasing performance demands in integrated circuits, together with limited energy budgets, force IC designers to find new ways of saving power. One innovative way is the presented adaptive voltage scaling scheme, which tunes the supply voltage according to the present process, voltage and temperature variations as well as aging. The voltage is adapted “on the fly” by means of in-situ delay monitors to exploit unused timing margin, produced by state-of-the-art worst-case designs. This book discusses the design of the enhanced in-situ delay monitors and the implementation of the complete control-loop comprising the monitors, a control-logic and an on-chip voltage regulator. An analytical Markov-based model of the control-loop is derived to analyze its robustness and stability. Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits provides an in-depth assessment of the proposed voltage scaling scheme when applied to an arithmetic and an image processing circuit. This book is written for engineers interested in adaptive techniques for low-power CMOS circuits.

About the authors

Martin Wirnshofer received the Dipl.-Ing. degree in Electrical Engineering in 2007 from the Technische Universität München (TUM), Germany. His research on voltage reference circuits earned him the Outstanding Thesis Award by the German Association of Electrical Engineers (VDE). From 2007 to 2008 he was an analog designer with the Embedded Flash Memory Group at Infineon Technologies AG, Munich. Since 2008 he is a doctoral researcher at the Institute for Technical Electronics at TUM and has recently finished his Ph.D. project. He received the Excellence in Teaching Award by the Faculty of Electrical Engineering in 2010 and has authored and co-authored numerous international conference and journal publications. His research interests include low-power and low-voltage circuit design, adaptive circuit techniques and design methodologies for the nanoscale CMOS era. He is a member of the IEEE and the German Association of Electrical Engineers.

Table of contents (8 chapters)

Buy this book

eBook $119.00
price for USA (gross)
  • ISBN 978-94-007-6196-4
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $159.00
price for USA
  • ISBN 978-94-007-6195-7
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Rent the ebook  
  • Rental duration: 1 or 6 month
  • low-cost access
  • online reader with highlighting and note-making option
  • can be used across all devices
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits
Authors
Series Title
Springer Series in Advanced Microelectronics
Series Volume
41
Copyright
2013
Publisher
Springer Netherlands
Copyright Holder
Springer Science+Business Media Dordrecht
eBook ISBN
978-94-007-6196-4
DOI
10.1007/978-94-007-6196-4
Hardcover ISBN
978-94-007-6195-7
Series ISSN
1437-0387
Edition Number
1
Number of Pages
XI, 83
Number of Illustrations and Tables
53 b/w illustrations
Topics