Biological and Medical Physics, Biomedical Engineering

Biomimetic Membranes for Sensor and Separation Applications

Editors: Hélix-Nielsen, Claus (Ed.)

  • A state-of-the-art Work on advances in developing biomimetic membranes for technological applications
  • Provides an overview of what is known in the field, where additional research is needed, and where the field is heading
  • An associate professor at Denmark Technical University and the Research Director at Aquaporin, the editor is at home both on the theoretical side and on the applied side of his subject
see more benefits

Buy this book

eBook $119.00
price for USA (gross)
  • ISBN 978-94-007-2184-5
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $159.00
price for USA
  • ISBN 978-94-007-2183-8
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $159.00
price for USA
  • ISBN 978-94-017-8224-1
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Rent the ebook  
  • Rental duration: 1 or 6 month
  • low-cost access
  • online reader with highlighting and note-making option
  • can be used across all devices
About this book

This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed.
Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.

About the authors

The Editor, born in 1964, Lemvig, Denmark, received his PhD in Physics in 1993 from the Technical University of Denmark. After several research positions, among which a postdoctoral fellowship at the Weill Medical College, Cornell University (1995-2000), he became an associate professor at the Technical University of Denmark. Currently he is the Research Director at Aquaporin, Lyngby, Denmark.

Table of contents (13 chapters)

  • Sensing Meets Separation: Water Transport Across Biological Membranes

    Hillyard, Stanley D.

    Pages 1-20

  • Nature Meets Technology: Forward Osmosis Membrane Technology

    Wicaksana, Filicia (et al.)

    Pages 21-42

  • Polymer-Based Biomimetic Membranes for Desalination

    Kumar, Manish (et al.)

    Pages 43-62

  • Ion-Selective Biomimetic Membranes

    Miedema, Henk

    Pages 63-86

  • Vesicle Arrays as Model-Membranes and Biochemical Reactor Systems

    Christensen, Sune M. (et al.)

    Pages 87-112

Buy this book

eBook $119.00
price for USA (gross)
  • ISBN 978-94-007-2184-5
  • Digitally watermarked, DRM-free
  • Included format: PDF, EPUB
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $159.00
price for USA
  • ISBN 978-94-007-2183-8
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $159.00
price for USA
  • ISBN 978-94-017-8224-1
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Rent the ebook  
  • Rental duration: 1 or 6 month
  • low-cost access
  • online reader with highlighting and note-making option
  • can be used across all devices
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Biomimetic Membranes for Sensor and Separation Applications
Editors
  • Claus Hélix-Nielsen
Series Title
Biological and Medical Physics, Biomedical Engineering
Copyright
2012
Publisher
Springer Netherlands
Copyright Holder
Springer Science+Business Media B.V.
eBook ISBN
978-94-007-2184-5
DOI
10.1007/978-94-007-2184-5
Hardcover ISBN
978-94-007-2183-8
Softcover ISBN
978-94-017-8224-1
Series ISSN
1618-7210
Edition Number
1
Number of Pages
XVI, 292
Topics