Skip to main content

Progress in Botany 69

  • Book
  • © 2008

Overview

  • Review of the latest results in the major areas of the plant sciences in the past 1-2 years

Part of the book series: Progress in Botany (BOTANY, volume 69)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (18 chapters)

  1. Review

  2. Genetics

  3. Physiology

Keywords

About this book

With regard to global climate changes, one of our future challenges will be to develop crop plants that cope better with changing environmental conditions. Abiotic stress is estimated to be the primary cause of crop loss worldwide, with the potential to cause a reduction of more than 50% in the average yield of the main crops. Climatic extremes are known to trigger senescence processes. Many different agriculturally important traits are affected by senescence, like number and quality of seeds, timing of seed set, fruit ripening, etc. . Despite the importance of the sen- cence processes, our knowledge on the regulatory mechanisms of senescence is still poor. However, senescence is not a chaotic breakdown, but an orderly loss of normal cell functions. In contrast to aging processes which have a passive and non-regulated degenerative character (for a review, see Krupinska et al. 2003), senescence is an active and highly regulated process. Senescence can be initiated by exogenous and endogenous triggers. The most important endogenous factors inducing senescence are the age of the leaves and the age and developmental stage of the plant. The leaves of annual plants show a continuous decrease in their photosynthesis rate after full expansion (Batt and Woolhause 1975; Hensel et al. 1993). In fast-aging plants like Arabidopsis, photosynthetic capacity of the leaves decreases by 50% within 4–6 days of full leaf expansion under continuous light conditions (Hensel et al. 1993).

Editors and Affiliations

  • TU Darmstadt, Institut für Botanik FB Biologie (10), Darmstadt, Germany

    Ulrich Lüttge

  • Fakultät für Biologie Lehrstuhl für Experimentelle Ökologie und Ökosystembiologie, Universität Bielefeld, Bielefeld, Germany

    Wolfram Beyschlag

  • Botanical Gardens Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan

    Jin Murata

Bibliographic Information

Publish with us