Skip to main content

Hydrogen as an Energy Carrier

Technologies, Systems, Economy

  • Book
  • © 1988

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 chapters)

  1. Hydrogen as an Energy Carrier — A Guide

  2. The Importance of Hydrogen and Its Utilization Prospects

  3. Production of Hydrogen from Nonfossil Primary Energy

  4. Design of a Future Hydrogen Energy Economy

Keywords

About this book

The technologies of hydrogen's energetic utilization have been known for a long time. But aspects of system analysis, energy economics, and ecology that would come into play in introducing it into energy systems nave received much less attention. For those reasons, this book attempts to show the development path of a hydrogen economy, based on assured technological knowledge. One special concern has been to demonstrate, on one hand, how these developments would fit into existing energy supply structures, and, on the other, how they would contribute to further development of the energy system as a whole. With that goal in mind it is necessary to contrast the obvious advantages of hydrogen with the large efforts that would be required for its introduction. This total-systems approach led to a three-part organization of the book that also aids the reader in quickly identifying those parts that are of special interest to him. Section A essentially explains why it is necessary today to think about a new synthetic energy carrier. It also describes the irreplacable and growing role of hydrogen as a chemical raw material, and it explains technologies that al­ ready exist for its energetic use or that need further development. An attempt has also been made to prove that hydrogen's safety characteristics indeed per­ mit its handling and use as an energy carrier. Hopefully, all this will show that hydrogen, together with electricity, could be the universally employable energy carrier of a future non-fossil energy supply system.

Editors and Affiliations

  • Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., Stuttgart 80, Germany

    Carl-Jochen Winter, Joachim Nitsch

Bibliographic Information

Publish with us