Skip to main content

The Foxtail Millet Genome

  • Book
  • © 2017

Overview

  • Addresses both theoretical and practical aspects of foxtail millet breeding
  • Discusses the latest advances in the genetics and genomics of this model plant
  • Places special emphasis on abiotic stress tolerance
  • Includes supplementary material: sn.pub/extras

Part of the book series: Compendium of Plant Genomes (CPG)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

This book presents up-to-date information on foxtail millet genomics, with a particular focus on its agronomic importance, genome architecture, marker development, evolutionary and diversity studies, comparative genomics and stress biology. The topics discussed have the potential to open up a new era of crop improvement in foxtail millet and other related grass species.

Foxtail millet (Setaria italica L.) is the oldest domesticated crop in the world (domesticated >8700 years ago) and it has been extensively grown in the semi-arid regions of Asia, Europe and the Americas as a food and fodder crop ever since. Further, as a C4 crop with close genetic relatedness to several biofuel grasses, foxtail millet has been promoted as a model plant. In view of its importance, the US Department of Energy Joint Genome Institute and Beijing Genomics Institute have independently sequenced the genome of foxtail millet. The availability of the draft genome sequence has advanced the genomics andgenetics of this important crop, resulting in the development of large-scale genome-wide molecular markers and demonstration of their utility in genomics-assisted breeding, as well as the identification of the molecular and biological roles of several stress-responsive gene families in connection with abiotic stress tolerance. In addition, several open access databases have been developed to make these resources for crop improvement through structural and functional genomics widely available.

Editors and Affiliations

  • Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, India

    Manoj Prasad

Bibliographic Information

Publish with us