Skip to main content
Book cover

Basic Physics of Functionalized Graphite

  • Book
  • © 2016

Overview

  • Presents newly discovered phenomena of ferromagnetism order and superconductivity
  • Covers the application potential of functionalized graphite
  • Shows various similar properties of graphite and graphene

Part of the book series: Springer Series in Materials Science (SSMATERIALS, volume 244)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

This book summarizes the basic physics of graphite and newly discovered phenomena in this material. The book contains the knowledge needed to understand novel properties of functionalized graphite demonstrating the occurrence of remarkable phenomena in disordered graphite and graphite-based heterostructures. It also discusses applications of thin graphitic samples in future electronics. Graphite consists of a stack of nearly decoupled two-dimensional graphene planes. Because of the low dimensionality and the presence of Dirac fermions, much of graphite physics resembles that of graphene. On the other hand, the multi-layered nature of the graphite structure together with structural and/or chemical disorder are responsible for phenomena that are not observed yet in graphene, such as ferromagnetic order and superconductivity. Each chapter was written by one or more experts in the field whose contributions were relevant in the (re)discovery of (un)known phenomena in graphite. The book is intended as reference for beginners and experts in the field, introducing them to many aspects of the new physics of graphite, with a fresh overview of recently found phenomena and the theoretical frames to understand them.

Editors and Affiliations

  • Institute for Experimental Physics II, University of Leipzig, Leipzig, Germany

    Pablo D. Esquinazi

About the editor

Pablo David Esquinazi started his physics studies at the University of Tucumán (Argentine) in 1974 before deciding in 1976 to continue at the Balseiro Institute in Bariloche (Argentine), where he finished his Ph.D. in 1983 working on amorphous superconductors under the supervision of Prof. F. de la Cruz. After research stays in Heidelberg and Bariloche he finished his habilitation at Bayreuth University (Germany) in 1991 working in very low temperature physics issues like two-level systems in solids (Prof. F. Pobell division) and the physics of vortices in high-temperature superconductors. For his contribution to understand the thermally activated behaviour of the flux line lattice in high-temperature superconductors and for the measurements at ultralow temperatures of the acoustic properties of amorphous and crystalline solids he received the Rudolf-Kaiser-Award in 1993. Since 1980 PE published more than 280 papers in peer review journals, having a h-index of 45 and an i10-index of165. He is editor of the Book: “Tunneling systems in amorphous and crystalline solids”, published by Springer. His main research activities in recent years were related to defect-induced magnetism in solids, including graphite and oxides, and to the search for high-temperature superconductivity in graphite.  

Bibliographic Information

Publish with us