Skip to main content

Computer Vision Metrics

Textbook Edition

  • Textbook
  • © 2016

Overview

  • Provides the most complete survey of computer vision feature description methods including local, regional, global, and basis feature learning via deep learning and neural networks
  • Offers learning assignments at the end of each chapter for student or instructor use
  • Includes techniques for optimizing computer vision algorithm performance such as SW and HW architecture considerations

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods. 



To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized.



The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools.

Authors and Affiliations

  • Krig Research, USA

    Scott Krig

About the author

Scott Krig is a pioneer in computer imaging, computer vision, and graphics visualization. He founded Krig Research in 1988, providing the world's first image and vision systems based on high-performance engineering workstations, super-computers, and dedicated imaging hardware, serving customers worldwide in 25 countries. Scott has provided imaging and vision solutions around the globe, and has worked closely with many industries including aerospace, military, intelligence, law enforcement, government research, and academic organizations. More recently, Scott has worked for major corporations and startups serving commercial markets, solving problems in the areas of computer vision, imaging, graphics, visualization, robotics, process control, industrial automation, computer security, cryptography, and consumer applications of imaging and machine vision to PCs, laptops, mobile phones, and tablets. Most recently, he provided direction for Intel Corporation in the area of depth-sensing andcomputer vision methods for embedded systems and mobile platforms. Scott is the author of many patent applications worldwide in the areas of embedded systems, imaging, computer vision, DRM, and computer security, and studied at Stanford.   

Bibliographic Information

Publish with us