Skip to main content
Book cover

Physics at the Biomolecular Interface

Fundamentals for Molecular Targeted Therapy

  • Book
  • © 2016

Overview

  • Focuses on the role of interfacial forces in understanding biological phenomena at the molecular scale
  • Develops a statistical mechanical framework suited to study the protein-water interface
  • Provides unique computational tools to tackle core problems in biophysics, such as the protein folding problem, the discovery of binding sites in proteins and the rational design of therapeutic drugs
  • Equips the reader with a unique bioinformatics background to develop a technological platform for rational drug design grounded in physics fundamentals
  • Includes supplementary material: sn.pub/extras

Part of the book series: Soft and Biological Matter (SOBIMA)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (18 chapters)

Keywords

About this book

This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics.

The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood without dealing with interfacial behaviour. There is an urge to grasp how biologically relevant behaviour is shaped by the structuring of biomolecular interfaces and how interfacial tension affects the molecular events that take place in the cell. This book squarely addresses these needs from a physicist perspective.

The book may serve as a monograph for practitioners and, alternatively, as an advanced textbook. Fruitful reading requires a background in physical chemistry and some basics in biophysics. The selected problems at the end of the chapters and the progression in conceptual difficulty make it a suitable textbook for a graduate level course or an elective course for seniors majoring in chemistry, physics, biomedical engineering or related disciplines.

Reviews

“It does give all of the background information developed by the author who is seeking an understanding at the molecular level of what happens at the protein-water interface. This in itself is a good reason to own the book. It is well written and the diagrams and explanations are clear for both the initiated and newcomer to the field.” (Peter J. Dobson, Contemporary Physics, Vol. 58 (4), September, 2017)

Authors and Affiliations

  • National Research Council (CONICET) , Buenos Aires, Argentina

    Ariel Fernández

About the author

Ariel Fernández (born Ariel Fernández Stigliano) is an Argentine-American physical chemist and mathematician. He obtained his Ph. D. degree in Chemical Physics from Yale University in record time. He held the Karl F. Hasselmann Endowed Chair Professorship in Engineering at Rice University and was a Professor of Bioengineering until his retirement in 2012. To date, he has published over 350 scientific papers in professional journals including Physical Review Letters, PNAS, Nature, Genome Research and Genome Biology. Ariel Fernandez has also published two books: “Transformative Concepts for Drug Design” (2010) and “Biomolecular Interfaces” (2015), both with Springer, and holds two patents (US. 8,466,154 and 9,051,387) on biotechnological innovations. He is currently involved in research and entrepreneurial activities at various consultancy firms.

Bibliographic Information

Publish with us