Annals of Information Systems

Real World Data Mining Applications

Editors: Abou-Nasr, M., Lessmann, S., Stahlbock, R., Weiss, G.M. (Eds.)

  • Addresses the broad range of  issues in data mining
  • Looks at applications in business and management, fraud detection, and new medical applications
  • Covers established and cutting-edge applications
see more benefits

Buy this book

eBook $139.00
price for USA (gross)
  • ISBN 978-3-319-07812-0
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Softcover $179.00
price for USA
  • ISBN 978-3-319-07811-3
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
About this book

Data mining applications range from commercial to social domains, with novel applications appearing swiftly; for example, within the context of social networks. The expanding application sphere and social reach of advanced data mining raise pertinent issues of privacy and security. Present-day data mining is a progressive multidisciplinary endeavor. This inter- and multidisciplinary approach is well reflected within the field of information systems. The information systems research addresses software and hardware requirements for supporting computationally and data-intensive applications. Furthermore, it encompasses analyzing system and data aspects, and all manual or automated activities. In that respect, research at the interface of information systems and data mining has significant potential to produce actionable knowledge vital for corporate decision-making. The aim of the proposed volume is to provide a balanced treatment of the latest advances and developments in data mining; in particular, exploring synergies at the intersection with information systems. It will serve as a platform for academics and practitioners to highlight their recent achievements and reveal potential opportunities in the field. Thanks to its multidisciplinary nature, the volume is expected to become a vital resource for a broad readership ranging from students, throughout engineers and developers, to researchers and academics. 

About the authors

Dr. Abou-Nasr is a Senior Member of the IEEE and Vice Chair of the Computational Intelligence & Systems Man and Cybernetics, Southeast Michigan Chapter.  He has received the B.Sc. degree in Electrical Engineering in 1977 from the University of Alexandria, Egypt, the M.S. and the Ph.D. degrees in 1984 and 1994 respectively from the University of Windsor, Ontario, Canada, both in Electrical Engineering.  Currently he is a Technical Expert with Ford Motor Company, Research and Advanced Engineering, Modern Control Methods and Computational Intelligence Group, where he leads research & development of neural network and advanced computational intelligence techniques for automotive applications.   His research interests are in the areas of neural networks, data mining, machine learning, pattern recognition, forecasting, optimization and control.  He is an adjunct faculty member of the computer science department, Wayne State University, Detroit, Michigan and was an adjunct faculty member of the operations research department, University of Michigan Dearborn. Prior to joining Ford, he held electronics and software engineering positions with the aerospace and robotics industries in the areas of real-time control and embedded communications protocols.  He is an associate editor of the DMIN'09-DMIN'14 proceedings and a member of the program and technical committees of IJCNN, DMIN, WCCI, ISVC, CYBCONF and ECAI. He is also a reviewer for IJCNN, MSC, CDC, Neural Networks, Control & Engineering Practice and IEEE Transactions on Neural Networks & Learning Systems.  Dr. Abou-Nasr has organized and chaired special sessions in DMIN and IJCNN conferences, as well as international classification competitions in WCCI 2008 in Hong Kong and IJCNN2011 in San Jose CA.

Dr. Lessmann received a M.Sc. and a Ph.D. in Business Administration from the University of Hamburg (Germany) in 2001 and 2007, respectively. He is currently employed as a lecturer in Information Systems at the University of Hamburg. Stefan is also a member of the Centre for Risk Research at the University of Southampton, where he teaches courses in Management Science and Information Systems. His research concentrates on managerial decision support and advanced analytics in particular. He is especially interested in predictive modeling to solve planning problems in marketing, finance, and operations management. He has published several papers in leading scholarly outlets including the European Journal of Operational Research, the ICIS Proceedings or the International Journal of Forecasting. He is also involved with consultancy in the aforementioned domains and has completed several technology-transfer projects in the publishing, the automotive and the logistics industry.

Dr. Stahlbock holds a diploma in Business Administration and a PhD from the University of Hamburg (Germany). He is currently employed as a lecturer and researcher at the Institute of Information Systems at the University of Hamburg. He is also lecturer at FOM University of Applied Sciences (Germany) since 2003. His research interests are focused on managerial decision support and issues related to maritime logistics and other industries as well as operations research, information systems and business intelligence. He is author of research studies published in international prestigious journals as well as conference proceedings and book chapters and serves as reviewer for international leading journals as well as a member of conference program committees. He is General Chair of the International Conference on Data Mining (DMIN) since 2006.

Dr. Gary Weiss is an Associate Professor in the Computer and Information Science Department at Fordham University in New York City. His current research involves the mining of sensor data from smartphones and other mobile devices in support of activity recognition and related applications. His Wireless Sensor Data Mining (WISDM) Lab recently released the actitracker activity tracking app (actitracker.com). Prior to coming to Fordham, Dr. Weiss worked at AT&T Labs as a software engineer, expert system developer, and as a data scientist. He received a B.S. degree in Computer Science from Cornell University, an M.S. degree in Computer Science from Stanford University, and a Ph.D. degree in Computer Science from Rutgers University. He has published over fifty papers in machine learning and data mining and his research is supported by funding from the National Science Foundation, Google, and Citigroup.

Dr. Lessmann received a M.Sc. and a Ph.D. in Business Administration from the University of Hamburg (Germany) in 2001 and 2007, respectively. He is currently employed as a lecturer in Information Systems at the University of Hamburg. Stefan is also a member of the Centre for Risk Research at the University of Southampton, where he teaches courses in Management Science and Information Systems. His research concentrates on managerial decision support and advanced analytics in particular. He is especially interested in predictive modeling to solve planning problems in marketing, finance, and operations management. He has published several papers in leading scholarly outlets including the European Journal of Operational Research, the ICIS Proceedings or the International Journal of Forecasting. He is also involved with consultancy in the aforementioned domains and has completed several technology-transfer projects in the publishing, the automotive and the logistics industry.

Dr. Stahlbock holds a diploma in Business Administration and a PhD from the University of Hamburg (Germany). He is currently employed as a lecturer and researcher at the Institute of Information Systems at the University of Hamburg. He is also lecturer at FOM University of Applied Sciences (Germany) since 2003. His research interests are focused on managerial decision support and issues related to maritime logistics and other industries as well as operations research, information systems and business intelligence. He is author of research studies published in international prestigious journals as well as conference proceedings and book chapters and serves as reviewer for international leading journals as well as a member of conference program committees. He is General Chair of the International Conference on Data Mining (DMIN) since 2006.

Dr. Gary Weiss is an Associate Professor in the Computer and Information Science Department at Fordham University in New York City. His current research involves the mining of sensor data from smartphones and other mobile devices in support of activity recognition and related applications. His Wireless Sensor Data Mining (WISDM) Lab recently released the actitracker activity tracking app (actitracker.com). Prior to coming to Fordham, Dr. Weiss worked at AT&T Labs as a software engineer, expert system developer, and as a data scientist. He received a B.S. degree in Computer Science from Cornell University, an M.S. degree in Computer Science from Stanford University, and a Ph.D. degree in Computer Science from Rutgers University. He has published over fifty papers in machine learning and data mining and his research is supported by funding from the National Science Foundation, Google, and Citigroup.

Dr. Lessmann received a M.Sc. and a Ph.D. in Business Administration from the University of Hamburg (Germany) in 2001 and 2007, respectively. He is currently employed as a lecturer in Information Systems at the University of Hamburg. Stefan is also a member of the Centre for Risk Research at the University of Southampton, where he teaches courses in Management Science and Information Systems. His research concentrates on managerial decision support and advanced analytics in particular. He is especially interested in predictive modeling to solve planning problems in marketing, finance, and operations management. He has published several papers in leading scholarly outlets including the European Journal of Operational Research, the ICIS Proceedings or the International Journal of Forecasting. He is also involved with consultancy in the aforementioned domains and has completed several technology-transfer projects in the publishing, the automotive and the logistics industry.

Dr. Stahlbock holds a diploma in Business Administration and a PhD from the University of Hamburg (Germany). He is currently employed as a lecturer and researcher at the Institute of Information Systems at the University of Hamburg. He is also lecturer at FOM University of Applied Sciences (Germany) since 2003. His research interests are focused on managerial decision support and issues related to maritime logistics and other industries as well as operations research, information systems and business intelligence. He is author of research studies published in international prestigious journals as well as conference proceedings and book chapters and serves as reviewer for international leading journals as well as a member of conference program committees. He is General Chair of the International Conference on Data Mining (DMIN) since 2006.

Dr. Gary Weiss is an Associate Professor in the Computer and Information Science Department at Fordham University in New York City. His current research involves the mining of sensor data from smartphones and other mobile devices in support of activity recognition and related applications. His Wireless Sensor Data Mining (WISDM) Lab recently released the actitracker activity tracking app (actitracker.com). Prior to coming to Fordham, Dr. Weiss worked at AT&T Labs as a software engineer, expert system developer, and as a data scientist. He received a B.S. degree in Computer Science from Cornell University, an M.S. degree in Computer Science from Stanford University, and a Ph.D. degree in Computer Science from Rutgers University. He has published over fifty papers in machine learning and data mining and his research is supported by funding from the National Science Foundation, Google, and Citigroup.

Table of contents (19 chapters)

  • Introduction

    Abou-Nasr, Mahmoud (et al.)

    Pages 1-12

  • What Data Scientists Can Learn from History

    Lai, Aaron

    Pages 15-29

  • On Line Mining of Cyclic Association Rules From Parallel Dimension Hierarchies

    Ben Ahmed, Eya (et al.)

    Pages 31-50

  • PROFIT: A Projected Clustering Technique

    Rajput, Dharmveer Singh (et al.)

    Pages 51-70

  • Multi-label Classification with a Constrained Minimum Cut Model

    Qu, Guangzhi (et al.)

    Pages 71-89

Buy this book

eBook $139.00
price for USA (gross)
  • ISBN 978-3-319-07812-0
  • Digitally watermarked, DRM-free
  • Included format: EPUB, PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Softcover $179.00
price for USA
  • ISBN 978-3-319-07811-3
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Real World Data Mining Applications
Editors
  • Mahmoud Abou-Nasr
  • Stefan Lessmann
  • Robert Stahlbock
  • Gary M. Weiss
Series Title
Annals of Information Systems
Series Volume
17
Copyright
2015
Publisher
Springer International Publishing
Copyright Holder
Springer International Publishing Switzerland
eBook ISBN
978-3-319-07812-0
DOI
10.1007/978-3-319-07812-0
Softcover ISBN
978-3-319-07811-3
Series ISSN
1934-3221
Edition Number
1
Number of Pages
XVI, 418
Number of Illustrations and Tables
48 b/w illustrations, 96 illustrations in colour
Topics