Skip to main content
  • Book
  • © 2014

Resolving Strong Field Dynamics in Cation States of CO_2 via Optimised Molecular Alignment

Authors:

  • Nominated a prize winning thesis by Imperial College, London
  • Provides and accessible and extensive introduction to strong field molecular physics
  • Presents a simple but powerful technique for studying the angular dependence of strong field processes, especially those resulting in zero kinetic energy release fragments
  • Discusses for the first time multi-cation channel contributions to non-sequential double ionization
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

  • 2978 Accesses

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (8 chapters)

  1. Front Matter

    Pages i-xviii
  2. Introduction

    • Malte Oppermann
    Pages 1-7
  3. Molecules in Strong Laser Fields

    • Malte Oppermann
    Pages 9-50
  4. Lasers

    • Malte Oppermann
    Pages 51-73
  5. Experimental Methods and Setup

    • Malte Oppermann
    Pages 75-120
  6. Conclusion

    • Malte Oppermann
    Pages 201-205

About this book

This thesis presents an experimental study of the ultrafast molecular dynamics of CO_2^+ that are induced by a strong, near-infrared, femtosecond laser pulse. In particular, typical strong field phenomena such as tunneling ionisation, nonsequential double ionisation and photo-induced dissociation are investigated and controlled by employing an experimental technique called impulsive molecular alignment. Here, a first laser pulse fixes the molecule in space, such that the molecular dynamics can be studied as a function of the molecular geometry with a second laser pulse. The experiments are placed within the context of the study and control of ultrafast molecular dynamics, where sub-femtosecond (10^-15 seconds) resolution in ever larger molecular systems represents the current frontier of research. The thesis presents the required background in strong field and molecular physics, femtosecond laser architecture and experimental techniques in a clear and accessible language that does not require any previous knowledge in these fields.

Authors and Affiliations

  • Department of Physics, Imperial College London, London, United Kingdom

    Malte Oppermann

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access