Skip to main content
  • Book
  • © 2013

Factors Governing Tin Whisker Growth

Authors:

  • Nominated by Auburn University, USA, as an outstanding Ph.D. thesis
  • Identifies and defines several factors that govern whisker formation and growth
  • Describes whisker prevention using a variety of impenetrable topside hard metal films which prevent Sn whiskers from penetrating through capping barriers
  • Studies why particular topside metal films prevent whisker growth while others do not
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (5 chapters)

  1. Front Matter

    Pages i-xii
  2. Film/Substrate Effects on Whisker Growth

    • Erika R. Crandall
    Pages 25-66
  3. Environmental Effects on Whisker Growth

    • Erika R. Crandall
    Pages 67-105
  4. Whisker Mitigation and Prevention

    • Erika R. Crandall
    Pages 107-123
  5. Conclusions

    • Erika R. Crandall
    Pages 125-131
  6. Back Matter

    Pages 133-136

About this book

Tin (Sn) whiskers are electrically conductive, single crystal eruptions that grow from Sn film surfaces. Their high aspect ratio presents reliability problems for the electronics industry due to bridging and metal arcing, leading to malfunctions and catastrophic failures in many electronic systems (including satellite and defense sectors). Due to legislation in the EU, Japan, and the U.S., mandating a gradual shift from lead (Pb)-based to lead-free solders and board finishes, there has been a reemergence of Sn whiskers. Continuing reports of Sn whisker induced failures coupled with the lack of an industry-accepted understanding of whisker growth and/or test methods to identify whisker prone products has made pure/high Sn substitutes a risky proposition in high reliability systems.

This thesis is designed to clarify and control the fundamental mechanisms that govern whisker formation. The research focuses on reproducible "laboratory" created whiskers under a variety of rigorously controlled environmental factors such as film thickness, film stress, substrate material, gas environment, and humidity exposure, which are known to play a significant role in whisker production. The ultimate question of how to impede and/or prevent whisker growth is also addressed and shows that whisker prevention is possible via hard metal capping films, which are impenetrable by whiskers.

Authors and Affiliations

  • Auburn University, Auburn, USA

    Erika R Crandall

About the author

Erika Crandall received her Ph.D. from the Department of Physics at Auburn University under supervisor Michael Bozack. She was awarded the 2012 Outstanding Doctoral Student Award from Auburn University, and was the inaugural recipient of the IEEE International Holm Conference Young Investigator Award for her paper “Whisker Growth Under Controlled Humidity Exposure.”

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access