Optimal Observation for Cyber-physical Systems

A Fisher-information-matrix-based Approach

Authors: Song, Z., Chen, Y., Sastry, C.R., Tas, N.C.

  • Presents a framework within which many problems can be solved without resort to a combination of different methods
  • Gives the reader access to a coordinated body of theoretical and applied research on the increasingly well-studied subject of cyber-physical systems
see more benefits

Buy this book

eBook $139.00
price for USA (gross)
  • ISBN 978-1-84882-656-4
  • Digitally watermarked, DRM-free
  • Included format: PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $179.00
price for USA
  • ISBN 978-1-84882-655-7
  • with online files
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $179.00
price for USA
  • ISBN 978-1-4471-5695-6
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
About this book

Cyber-physical systems (CPS) embody the interaction between a computing system and a physical process, being distinguished from traditional embedded systems by being designed as networks of interacting elements rather than as isolated devices. The wireless sensor networks (WSNs) which are the focus of the research presented here are examples of the application of CPS in monitoring some physical quantities of the environment and relaying the processed information to a central hub.

Optimal Observation for Cyber-physical Systems addresses the challenge, fundamental to the design of WSNs, presented by the obligatory trade-off between precise estimates and system constraints. A unified theoretical framework, based on the well-established theory of optimal experimental design and providing consistent solutions to problems hitherto requiring a variety of approaches, is put forward to solve a large class of optimal observation problems. The Fisher information matrix plays a key role in this framework and makes it feasible to provide analytical solutions to some complex and important questions which could not be answered in the past. A set of MATLAB® files are also provided for the use of the reader (via download from www.springer.com/978-1-84882-655-7), to simulate the experiments that are described in the book.

Optimal Observation for Cyber-physical Systems will be of interest to academic researchers in WSNs and to readers with an applied background in WSN implementation who will find most of the theoretical understanding of the key theory of optimal experimental design they need within this book. The use of multiple real-world examples to illustrate the theoretical parts of the book brings the subject into sharper focus than would an abstract theoretical disquisition. Researchers interested in convex optimization and in environmental monitoring and the estimation of diffusive pollution will also find the text of service.

Reviews

From the reviews:

“This book presents a Fisher information matrix approach to observation problems involving wireless sensor networks. The book is aimed at researchers and engineers interested in observation problems involving wireless networks.” (IEEE Control Systems Magazine, Vol. 30, October, 2010)


Table of contents (5 chapters)

Buy this book

eBook $139.00
price for USA (gross)
  • ISBN 978-1-84882-656-4
  • Digitally watermarked, DRM-free
  • Included format: PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $179.00
price for USA
  • ISBN 978-1-84882-655-7
  • with online files
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $179.00
price for USA
  • ISBN 978-1-4471-5695-6
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Optimal Observation for Cyber-physical Systems
Book Subtitle
A Fisher-information-matrix-based Approach
Authors
Copyright
2009
Publisher
Springer-Verlag London
Copyright Holder
Springer-Verlag London
eBook ISBN
978-1-84882-656-4
DOI
10.1007/978-1-84882-656-4
Hardcover ISBN
978-1-84882-655-7
Softcover ISBN
978-1-4471-5695-6
Edition Number
1
Number of Pages
XVIII, 171
Topics