Skip to main content

Value Distribution Theory and Related Topics

  • Book
  • © 2004

Overview

Part of the book series: Advances in Complex Analysis and Its Applications (ACAA, volume 3)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (16 chapters)

  1. Geometric value distribution theory

  2. Classical value distribution theory

  3. Complex differential and functional equations

Keywords

About this book

The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.

Editors and Affiliations

  • National Academy of Sciences of Armenia, Yerevan, Armenia

    G. Barsegian

  • University of Joensuu, Joensuu, Finland

    I. Laine

  • Hong Kong University of Science and Technology, Hong Kong, China

    C. C. Yang

Bibliographic Information

Publish with us