Skip to main content

Design Automation Methods and Tools for Microfluidics-Based Biochips

  • Book
  • © 2006

Overview

  • A complete volume that includes chapters contributed by the world’s leading experts in microfluidics and CAD for biochips
  • The first edited volume that addresses all aspects of biochip design automation –technology issues, modelling and simulation, synthesis, layout, and data analysis
  • Bridges different research communities – MEMS, fluidics, design automation, biochemistry, etc.
  • Balanced treatment of theory and applications to practical problems

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 chapters)

Keywords

About this book

Microfluidics-based biochips, also known as lab-on-a-chip or bio-MEMS, are becoming increasingly popular for DNA analysis, clinical diagnostics, and the detection/manipulation of bio-molecules. As the use of microfluidics-based biochips increases, their complexity is expected to become significant due to the need for multiple and concurrent assays on the chip, as well as more sophisticated control mechanisms for resource management. Time-to-market and fault tolerance are also expected to emerge as design considerations. As a result, current full-custom design techniques will not scale well for larger designs. There is a need to deliver the same level of CAD support to the biochip designer that the semiconductor industry now takes for granted.

Design Automation Methods and Tools for Microfluidics-Based Biochips deals with all aspects of design automation for microfluidics-based biochips. Experts have contributed chapters on various aspects of biochip design automation. Topics include device modeling; adaptation of bioassays for on-chip implementations; numerical methods and simulation tools; architectural synthesis, scheduling and binding of assay operations; physical design and module placement; fault modeling and testing; reconfiguration methods.

Editors and Affiliations

  • Duke University, Durham, U.S.A.

    Krishnendu Chakrabarty

  • Coventor Inc., Cambridge, U.S.A.

    Jun Zeng

Bibliographic Information

Publish with us