Interdisciplinary Applied Mathematics

Killer Cell Dynamics

Mathematical and Computational Approaches to Immunology

Authors: Wodarz, Dominik

Buy this book

eBook $129.00
price for USA (gross)
  • ISBN 978-0-387-68733-9
  • Digitally watermarked, DRM-free
  • Included format: PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $169.00
price for USA
  • ISBN 978-0-387-30893-7
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $169.00
price for USA
  • ISBN 978-1-4419-2165-9
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
About this book

This book reviews how mathematics can be used in combination with biological data in order to improve understanding of how the immune system works. This is illustrated largely in the context of viral infections. Mathematical models allow scientists to capture complex biological interactions in a clear mathematical language and to follow them to their precise logical conclusions. This can give rise to counter-intuitive insights which would not be attained by experiments alone, and can be used for the design of further experiments in order to address the mathematical results.

This book provides both an introduction to the field of mathematical immunology, and an overview of many topics which are the subject of current research, covering a broad variety of immunological topics. It starts with basic principles of immunology and covers the dynamical interactions between the immune system and specific viral infections, including important human pathogens such as HIV. General biological and mathematical background material to both virus infection and immune system dynamics is provided, and each chapter begins with a simple introduction to the biological questions examined.

This book is intended for an interdisciplinary audience. It explains the concept of mathematical modeling in immunology and shows how modeling has been used to address specific questions. It is intended both for the mathematical biologists who are interested in immunology, and for the biological readership that is interested in the use of mathematical models in immunology. Dominik Wodarz is an Associate Professor at the Department of Ecology and Evolutionary Biology at the University of California, Irvine.

Reviews

From the reviews:

"This book concentrates on a particular branch of the immune system: killer T cells … . the book provides an introduction to the field of mathematical immunology and an overview together a broad variety of immunological topics. … intended for an interdisciplinary audience, and it is written in a way such that experimental immunologists and virologists should be able to understand the arguments and to see the biological implications of the theory. An interesting text which might be a good complement to this book … ." (Eva Sanchez, Zentralblatt MATH, Vol. 1125 (2), 2008)


Table of contents (2 chapters)

Buy this book

eBook $129.00
price for USA (gross)
  • ISBN 978-0-387-68733-9
  • Digitally watermarked, DRM-free
  • Included format: PDF
  • ebooks can be used on all reading devices
  • Immediate eBook download after purchase
Hardcover $169.00
price for USA
  • ISBN 978-0-387-30893-7
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Softcover $169.00
price for USA
  • ISBN 978-1-4419-2165-9
  • Free shipping for individuals worldwide
  • Usually dispatched within 3 to 5 business days.
Loading...

Recommended for you

Loading...

Bibliographic Information

Bibliographic Information
Book Title
Killer Cell Dynamics
Book Subtitle
Mathematical and Computational Approaches to Immunology
Authors
Series Title
Interdisciplinary Applied Mathematics
Series Volume
32
Copyright
2007
Publisher
Springer-Verlag New York
Copyright Holder
Springer-Verlag New York
eBook ISBN
978-0-387-68733-9
DOI
10.1007/978-0-387-68733-9
Hardcover ISBN
978-0-387-30893-7
Softcover ISBN
978-1-4419-2165-9
Series ISSN
0939-6047
Edition Number
1
Number of Pages
XIII, 220
Topics