Skip to main content
Book cover

Lattice QCD Study for the Relation Between Confinement and Chiral Symmetry Breaking

  • Book
  • © 2017

Overview

  • Nominated as an outstanding PhD thesis by the Department of Physics, Kyoto University
  • Presents a new general method to express a gauge-invariant quantity with respect to the Dirac eigenmodes
  • Offers a clear introduction to Kogut–Susskind formalism on the temporally odd-number lattice
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (4 chapters)

Keywords

About this book

This thesis focuses on an unresolved problem in particle and nuclear physics: the relation between two important non-perturbative phenomena in quantum chromodynamics (QCD) – quark confinement and chiral symmetry breaking. The author develops a new analysis method in the lattice QCD, and derives a number of analytical formulae to express the order parameters for quark confinement, such as the Polyakov loop, its fluctuations, and the Wilson loop in terms of the Dirac eigenmodes closely related to chiral symmetry breaking. Based on the analytical formulae, the author analytically as well as numerically shows that at finite temperatures there is no direct one-to-one correspondence between them. The thesis describes this extraordinary achievement using the first-principle analysis, and proposes a possible new phase in which quarks are confined and chiral symmetry is restored.


Authors and Affiliations

  • Nishina Center, RIKEN, Saitama, Japan

    Takahiro Doi

About the author

Dr. Takahiro Doi is a special postdoctral researcher (SPDR) at RIKEN. His work is concerned with the theory of particle and nuclear physics. He received his Bachelor, Master and Ph.D. from the Department of Physics, Kyoto University in 2012, 2014 and 2017, respectively. He was awarded a research fellowship for young scientists for 2015 to 2017 by the Japan Society for Promotion of Science (JSPS), and his research was supported by the JSPS.

Bibliographic Information

Publish with us