Skip to main content

Defect Evolution in Cosmology and Condensed Matter

Quantitative Analysis with the Velocity-Dependent One-Scale Model

  • Book
  • © 2016

Overview

  • A comprehensive review of a model widely used to describe the evolution of cosmic strings, an important class of topological defect
  • Author pioneered the approach himself and demonstrates here its wide range of applicability
  • Includes a clear introduction to the fascinating field of topological defects
  • Includes supplementary material: sn.pub/extras

Part of the book series: SpringerBriefs in Physics (SpringerBriefs in Physics)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book sheds new light on topological defects in widely differing systems, using the Velocity-Dependent One-Scale Model to better understand their evolution. Topological defects – cosmic strings, monopoles, domain walls or others - necessarily form at cosmological (and condensed matter) phase transitions. If they are stable and long-lived they will be fossil relics of higher-energy physics. Understanding their behaviour and consequences is a key part of any serious attempt to understand the universe, and this requires modelling their evolution. The velocity-dependent one-scale model is the only fully quantitative model of defect network evolution, and the canonical model in the field. This book provides a review of the model, explaining its physical content and describing its broad range of applicability.

Authors and Affiliations

  • Centro de Astrofisica, University of Porto, Porto, Portugal

    C.J.A.P. Martins

About the author


Carlos Martins is an FCT Research Professor at the Center for Astrophysics of U. Porto (CAUP), and the Head of its Training Unit. He has an undergraduate degree in Astronomy from U. Porto, and a PhD in Theoretical Physics from U. Cambridge. He works on fundamental cosmology and particle astrophysics, focusing on precision consistency tests of standard cosmology and astrophysical searches for new physics.

Bibliographic Information

Publish with us