Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | Penalty, Shrinkage and Pretest Strategies - Variable Selection and Estimation

Penalty, Shrinkage and Pretest Strategies

Variable Selection and Estimation

Ahmed, S. Ejaz

2014, IX, 115 p. 6 illus.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$39.99

(net) price for USA

ISBN 978-3-319-03149-1

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$54.99

(net) price for USA

ISBN 978-3-319-03148-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • An important and substantial contribution to the existing knowledge on submodel, pretest and shrinkage estimation and comparison with penalty estimators
  • Nearly all the chapters are self-contained, providing theoretical and numerical solutions and featuring numerous examples based on real datasets
  • Blends together estimation and variable selection strategies for a host of applications
  • Conveys difficult ideas clearly and directly in a friendly, accessible style

The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models.  Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the asymptotic properties of the non-penalty estimators and their asymptotic distributional efficiency comparisons.  Further, the risk properties of the non-penalty estimators and penalty estimators are explored through a Monte Carlo simulation study. Showcasing examples based on real datasets, the book will be useful for students and applied researchers in a host of applied fields.

The book’s level of presentation and style make it accessible to a broad audience. It offers clear, succinct expositions of each estimation strategy.  More importantly, it clearly describes how to use each estimation strategy for the problem at hand.  The book is largely self-contained, as are the individual chapters, so that anyone interested in a particular topic or area of application may read only that specific chapter. The book is specially designed for graduate students who want to understand the foundations and concepts underlying penalty and non-penalty estimation and its applications. It is well-suited as a textbook for senior undergraduate and graduate courses surveying penalty and non-penalty estimation strategies, and can also be used as a reference book for a host of related subjects, including courses on meta-analysis. Professional statisticians will find this book to be a valuable reference work, since nearly all chapters are self-contained.

Content Level » Graduate

Keywords » 62J05, 62J07, 62F10, 62F12 - penalty estimation - pooling data - pretest and shrinkage estimation - regression models - variable selection

Related subjects » Computational Statistics - Statistical Theory and Methods

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.