Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | Competing Risks and Multistate Models with R

Competing Risks and Multistate Models with R

Series: Use R!

Beyersmann, Jan, Allignol, Arthur, Schumacher, Martin

2012, XI, 245p. 49 illus..

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4614-2035-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4614-2034-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • This book enables the reader to analyse complex time-to-event data himself, using the free open source language R for statistical computing
  • The data situations considered are competing risks--several, mutually exclusive event types and multistate models, that track an individuals history through different stages over time. These methods are a generalization of the now classical survivalanalysis--the analysis of time to one single event. Such data occur in a variety of fields, including life sciences, social sciences, economics and engineering
  • The methods are explained on a non-technical level and instantly carried out in R. This book covers data structures, simulating data, analyses of real life data and plotting

Competing Risks and Multistate Models with R covers models that generalize the analysis of time to a single event (survival analysis) to analyzing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on non- and semiparametric methods.


This book explains hazard-based analyses of competing risks and multistate data with R. Special emphasis is placed on the interpretation of the results. A unique feature of this book is that readers are encouraged to simulate their own data based on the transition hazards only, which are the key quantities of the subsequent analyses. This simulation-based approach is supplemented with real data examples from studies in clinical medicine where the authors have been involved.


This book is aimed at data analysts, with a background in standard survival analysis, who wish to understand, analyse and interpret more complex event histories with R. It is also suitable for graduate courses in biostatistics, statistics and epidemiological methods. The real data examples, R packages, and the entire R code used in the book are available online.


The authors are affiliated with the Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg and the Freiburg Center for Data Analysis and Modelling, University of Freiburg, Germany.  Jan Beyersmann is Senior Statistician and serves on the editorial board of Statistics in Medicine. Arthur Allignol is Statistician and has contributed several R packages on competing risks and multistate models.  Martin Schumacher is Professor of Biostatistics and Director of the Institute of Medical Biometry and Medical Informatics, Freiburg.  He has been involved in theoretical developments as well as in practical applications of survival analyses and their extensions over many years.

Content Level » Research

Keywords » Competing Risks - Hazard-based Analyses - Multistate Models - Survival Analysis

Related subjects » Statistical Theory and Methods

Table of contents / Preface / Sample pages 

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.