Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | Time Series Analysis and Its Applications - With R Examples

Time Series Analysis and Its Applications

With R Examples

Shumway, Robert H., Stoffer, David S.

3rd ed. 2011, XI, 596 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.95

(net) price for USA

ISBN 978-1-4419-7865-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-1-4419-7864-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-1-4614-2759-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory
  • Includes numerous examples that illustrate practical solutions to real-world problems
  • Features new material
  • Offers more details on the use of the freeware R statistical package

Time Series Analysis and Its Applications presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed to be useful as a text for graduate level students in the physical, biological and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression,  ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, stochastic volatility, wavelets and Markov chain Monte Carlo integration methods.  The third edition includes a new section on testing for unit roots and the material on state-space modeling, ARMAX models, and regression with autocorrelated errors has been expanded.

Also new to this edition is the enhanced use of the freeware statistical package R.  In particular, R code is now included in the text for nearly all of the numerical examples.  Data sets and additional R scripts are now provided in one file that may be downloaded via the World Wide Web.  This R supplement is a small compressed file that can be loaded easily into R making all the data sets and scripts available to the user with one simple command.  The website for the text includes the code used in each example so that the reader may simply copy-and-paste code directly into R.  Appendix R, which is new to this edition, provides a reference for the data sets and our R scripts that are used throughout the text. In addition, Appendix R includes a tutorial on basic R commands as well as an R time series tutorial.  

Content Level » Graduate

Keywords » ARIMA Models - Dynamic Linear Models - R - Spectral Analysis - Time Series Analysis

Related subjects » Life Sciences, Medicine & Health - Statistical Theory and Methods

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.