Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | A Distribution-Free Theory of Nonparametric Regression

A Distribution-Free Theory of Nonparametric Regression

Györfi, L., Kohler, M., Krzyzak, A., Walk, H.

2002, XVI, 650 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$179.00

(net) price for USA

ISBN 978-0-387-22442-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$229.00

(net) price for USA

ISBN 978-0-387-95441-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$229.00

(net) price for USA

ISBN 978-1-4419-2998-3

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

The regression estimation problem has a long history. Already in 1632 Galileo Galilei used a procedure which can be interpreted as ?tting a linear relationship to contaminated observed data. Such ?tting of a line through a cloud of points is the classical linear regression problem. A solution of this problem is provided by the famous principle of least squares, which was discovered independently by A. M. Legendre and C. F. Gauss and published in 1805 and 1809, respectively. The principle of least squares can also be applied to construct nonparametric regression estimates, where one does not restrict the class of possible relationships, and will be one of the approaches studied in this book. Linear regression analysis, based on the concept of a regression function, was introduced by F. Galton in 1889, while a probabilistic approach in the context of multivariate normal distributions was already given by A. B- vais in 1846. The ?rst nonparametric regression estimate of local averaging type was proposed by J. W. Tukey in 1947. The partitioning regression - timate he introduced, by analogy to the classical partitioning (histogram) density estimate, can be regarded as a special least squares estimate.

Content Level » Research

Keywords » Kernel - Martingal - neural networks - probability - probability theory

Related subjects » Statistical Theory and Methods

Table of contents 

Why is Nonparametric Regression Important? * How to Construct Nonparametric Regression Estimates * Lower Bounds * Partitioning Estimates * Kernel Estimates * k-NN Estimates * Splitting the Sample * Cross Validation * Uniform Laws of Large Numbers * Least Squares Estimates I: Consistency * Least Squares Estimates II: Rate of Convergence * Least Squares Estimates III: Complexity Regularization * Consistency of Data-Dependent Partitioning Estimates * Univariate Least Squares Spline Estimates * Multivariate Least Squares Spline Estimates * Neural Networks Estimates * Radial Basis Function Networks * Orthogonal Series Estimates * Advanced Techniques from Empirical Process Theory * Penalized Least Squares Estimates I: Consistency * Penalized Least Squares Estimates II: Rate of Convergence * Dimension Reduction Techniques * Strong Consistency of Local Averaging Estimates * Semi-Recursive Estimates * Recursive Estimates * Censored Observations * Dependent Observations

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.

Additional information