Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | Matrix Algebra From a Statistician's Perspective

Matrix Algebra From a Statistician's Perspective

Harville, David A.

1997, XVI, 634 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$69.99

(net) price for USA

ISBN 978-0-387-22677-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.99

(net) price for USA

ISBN 978-0-387-94978-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$99.00

(net) price for USA

ISBN 978-0-387-78356-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This book presents matrix algebra in a way that is well-suited for those with an interest in statistics or a related discipline. It provides thorough and unified coverage of the fundamental concepts along with the specialized topics encountered in areas of statistics such as linear statistical models and multivariate analysis. It includes a number of very useful results that have only been available from relatively obscure sources. Detailed proofs are provided for all results. The style and level of presentation are designed to make the contents accessible to a broad audience. The book is essentially self-contained, though it is best-suited for a reader who has had some previous exposure to matrices (of the kind that might be acquired in a beginning course on linear or matrix algebra). It includes exercises, it can serve as the primary text for a course on matrices or as a supplementary text in courses on such topics as linear statistical models or multivariate analysis, and it will be a valuable reference.

David A. Harville is a research staff member emeritus in the Mathematical Sciences Department of the IBM T.J. Watson Research Center. Prior to joining the Research Center, he spent ten years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories (at Wright-Patterson, Air Force Base, Ohio), followed by twenty years as a full professor in the Department of Statistics at Iowa State University. He has extensive experience in the area of linear statistical models, having taught (on numberous occasions) M.S.- and Ph.D.-level courses on that topic, having been the thesis adviser of ten Ph.D. students, and having authored more than 70 research articles. His work has been recognized by his having been named a Fellow of the American Statistical Association and of the Institute of Mathematical Statistics, by his election as a member of the International Statistical Institute, and by his having served as an associate editor of Biometrics and of the Journal of the American Statistical Association.

Content Level » Research

Keywords » Matrix Algebra - algebra - matrices - matrix - multivariate statistics - quadratic form - statistics - transformation

Related subjects » Statistical Theory and Methods

Table of contents 

Preface. - Matrices. - Submatrices and partitioned matricies. - Linear dependence and independence. - Linear spaces: row and column spaces. - Trace of a (square) matrix. - Geometrical considerations. - Linear systems: consistency and compatability. - Inverse matrices. - Generalized inverses. - Indepotent matrices. - Linear systems: solutions. - Projections and projection matrices. - Determinants. - Linear, bilinear, and quadratic forms. - Matrix differentiation. - Kronecker products and the vec and vech operators. - Intersections and sums of subspaces. - Sums (and differences) of matrices. - Minimzation of a second-degree polynomial (in n variables) subject to linear constraints. - The Moore-Penrose inverse. - Eigenvalues and Eigenvectors. - Linear transformations. - References. - Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.