Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | The Elements of Statistical Learning - Data Mining, Inference, and Prediction

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome

2001, XVI, 536 p.


Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

(net) price for USA

ISBN 978-0-387-21606-5

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items

  • The many topics include neural networks, support vector machines, classification trees and boosting - the first comprehensive treatment of this topic in any book
  • Includes over 200 pages of four-color graphics

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Content Level » Research

Keywords » Boosting - Random Forest - Support Vector Machine - algorithms - bioinformatics - classification - clustering - data mining - ensemble method - learning - machine learning - neural networks - statistics - supervised learning - unsupervised learning

Related subjects » Artificial Intelligence - Database Management & Information Retrieval - Physical & Information Science - Statistical Theory and Methods - Systems Biology and Bioinformatics - Theoretical Computer Science

Table of contents 

1 Introduction.- 2 Overview of Supervised Learning.- 3 Linear Methods for Regression.- 4 Linear Methods for Classification.- 5 Basis Expansions and Regularization.- 6 Kernel Methods.- 7 Model Assessment and Selection.- 8 Model Inference and Averaging.- 9 Additive Models, Trees, and Related Methods.- 10 Boosting and Additive Trees.- 11 Neural Networks.- 12 Support Vector Machines and Flexible Discriminants.- 13 Prototype Methods and Nearest-Neighbors.- 14 Unsupervised Learning.- References.- Author Index.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.

Additional information