Logo - springer
Slogan - springer

Statistics - Statistical Theory and Methods | Spatial Statistics and Computational Methods

Spatial Statistics and Computational Methods

Series: Lecture Notes in Statistics, Vol. 173

Møller, Jesper (Ed.)

2003, XIV, 205 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$129.00

(net) price for USA

ISBN 978-0-387-21811-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$169.00

(net) price for USA

ISBN 978-0-387-00136-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model- based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and H?vard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001.

Content Level » Research

Related subjects » Statistical Theory and Methods

Table of contents 

Theory and Practice of Markov chain Monte Carlo (MCMC) Methods * Model-based Geostatistics * Simulation-based Inference for Spatial Point Processes * Low and High Level Bayesian Image Analysis

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistical Theory and Methods.

Additional information