Logo - springer
Slogan - springer

Statistics - Life Sciences, Medicine & Health | Converting Data into Evidence - A Statistics Primer for the Medical Practitioner

Converting Data into Evidence

A Statistics Primer for the Medical Practitioner

DeMaris, Alfred, Selman, Steven H.

2013, XV, 221 p. 48 illus., 24 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$59.99

(net) price for USA

ISBN 978-1-4614-7792-1

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$79.99

(net) price for USA

ISBN 978-1-4614-7791-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • ​Provides a broad statistical overview immediately relevant to postgraduate physicians and nurses
  • Provides the essence of potentially esoteric statistical distributions and applications so they are accessible to non -statistician health care professionals
  • Utilizes real data sets from recent clinical trials and observational studies in urology to illustrate data analysis techniques

Converting Data into Evidence: A Statistics Primer for the Medical Practitioner provides a thorough introduction to the key statistical techniques that medical practitioners encounter throughout their professional careers. These techniques play an important part in evidence-based medicine or EBM. Adherence to EBM requires medical practitioners to keep abreast of the results of medical research as reported in their general and specialty journals. At the heart of this research is the science of statistics. It is through statistical techniques that researchers are able to discern the patterns in the data that tell a clinical story worth reporting. The authors begin by discussing samples and populations, issues involved in causality and causal inference, and ways of describing data. They then proceed through the major inferential techniques of hypothesis testing and estimation, providing examples of univariate and bivariate tests. The coverage then moves to statistical modeling, including linear and logistic regression and survival analysis. In a final chapter, a user-friendly introduction to some newer, cutting-edge, regression techniques will be included, such as fixed-effects regression and growth-curve modeling. A unique feature of the work is the extensive presentation of statistical applications from recent medical literature. Over 30 different articles are explicated herein, taken from such journals. With the aid of this primer, the medical researcher will also find it easier to communicate with the statisticians on his or her research team. The book includes a glossary of statistical terms for easy access. This is an important reference work for the shelves of physicians, nurses, nurse practitioners, physician’s assistants, medical students, and residents. 

Content Level » Professional/practitioner

Keywords » biostatistics - clinical trials - epidemiology - observational epidemiology

Related subjects » Life Sciences, Medicine & Health - Statistics

Table of contents 

​​Statistics and Causality.- Summarizing Data.- Statistical Inference: Testing and Estimation.- Confidence Intervals, Another Test, and Statistical Power.- Bivariate Statistical Techniques.- Linear Regression Models.- Nonlinear Regression Models.- Survival Analysis.- Other Regression Techniques.- Concluding Comments.- Glossary.- References.     ​

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistics for Life Sciences, Medicine, Health Sciences.