Logo - springer
Slogan - springer

Statistics - Computational Statistics | Bayesian Essentials with R

Bayesian Essentials with R

Marin, Jean-Michel, Robert, Christian

2nd ed. 2014, XIV, 296 p. 75 illus., 38 illus. in color.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$49.99

(net) price for USA

ISBN 978-1-4614-8687-9

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.99

(net) price for USA

ISBN 978-1-4614-8686-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • No prior knowledge of R required to learn the essentials for using it with Bayesian statistics
  • Each chapter includes exercises that are both methodology and data-based
  • Important textbook for students, practitioners, and applied statisticians

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. The stakes are high and the reader determines the outcome. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. This works in conjunction with the bayess package.

Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels, as exemplified by courses given at Université Paris Dauphine (France), University of Canterbury (New Zealand), and University of British Columbia (Canada). It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. A strength of the text is the noteworthy emphasis on the role of models in statistical analysis.

This is the new, fully-revised edition to the book Bayesian Core: A Practical Approach to Computational Bayesian Statistics. 

Content Level » Upper undergraduate

Keywords » Bayesian R - Bayesian data analysis - Bayesian methodology - Bayesian modeling - Bayesian textbook - Computational Statistics - R

Related subjects » Computational Statistics - Statistical Theory and Methods

Table of contents / Preface / Sample pages 

Distribution rights 

Distribution rights for India: Researchco Book Centre, New Delhi, India

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistics and Computing / Statistics Programs.