Logo - springer
Slogan - springer

Statistics - Computational Statistics | Simulation and Inference for Stochastic Differential Equations - With R Examples

Simulation and Inference for Stochastic Differential Equations

With R Examples

Iacus, Stefano M.

2008

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$119.00

(net) price for USA

ISBN 978-0-387-75839-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-0-387-75838-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$149.00

(net) price for USA

ISBN 978-1-4419-2607-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Ready to use functions allow for instant analysis on real life data
  • Many figures give immediate impression of how the methods perform
  • Theoretical results are presented side-by-side with R code to ease the passage from theory to practice

This book is unique because of its focus on the practical implementation of the simulation and estimation methods presented. The book will be useful to practitioners and students with only a minimal mathematical background because of the many R programs, and to more mathematically-educated practitioners.

Many of the methods presented in the book have not been used much in practice because the lack of an implementation in a unified framework. This book fills the gap.

With the R code included in this book, a lot of useful methods become easy to use for practitioners and students. An R package called "sde" provides functions with easy interfaces ready to be used on empirical data from real life applications. Although it contains a wide range of results, the book has an introductory character and necessarily does not cover the whole spectrum of simulation and inference for general stochastic differential equations.

The book is organized into four chapters. The first one introduces the subject and presents several classes of processes used in many fields of mathematics, computational biology, finance and the social sciences. The second chapter is devoted to simulation schemes and covers new methods not available in other publications. The third one focuses on parametric estimation techniques. In particular, it includes exact likelihood inference, approximated and pseudo-likelihood methods, estimating functions, generalized method of moments, and other techniques. The last chapter contains miscellaneous topics like nonparametric estimation, model identification and change point estimation. The reader who is not an expert in the R language will find a concise introduction to this environment focused on the subject of the book. A documentation page is available at the end of the book for each R function presented in the book.

Stefano M. Iacus is associate professor of Probability and Mathematical Statistics at the University of Milan, Department of Economics, Business and Statistics. He has a PhD in Statistics at Padua University, Italy and in Mathematics at Université du Maine, France.

He is a member of the R Core team for the development of the R statistical environment, Data Base manager for the Current Index to Statistics, and IMS Group Manager for the Institute of Mathematical Statistics. He has been associate editor of the Journal of Statistical Software.

Content Level » Research

Keywords » Information - Likelihood - Simulation - Stochastic Processes - compuational statistics - inference for stochastic processes - numerical methods - simulation methods - stochastic differential equations - stochastic process - time series analysis

Related subjects » Analysis - Computational Statistics - Econometrics / Statistics - Probability Theory and Stochastic Processes - Quantitative Finance - Theoretical Computer Science

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Statistics and Computing / Statistics Programs.

Additional information