Logo - springer
Slogan - springer

Springer Spektrum - Mathematik - Geometrie & Topologie | Differentialgeometrie - Kurven - Flächen - Mannigfaltigkeiten

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Kühnel, Wolfgang

6., akt. Aufl. 2013, VIII, 284 S. 50 Abb.

Formate:
eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

 
$39.95

(net) Preis für USA

ISBN 978-3-658-00615-0

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

Softcover
Information

Broschierte Ausgabe

Springer-Bücher können mit Visa, Mastercard, American Express, Paypal sowie auf Rechnung bezahlt werden.

Standard-Versand ist für Individualkunden kostenfrei.

 
$49.95

(net) Preis für USA

ISBN 978-3-658-00614-3

kostenfreier Versand für Individualkunden

Der Titel wird nachgedruckt. Sie können ihn gerne vorbestellen.


add to marked items

  • Differentialgeometrie modern und anschaulich

Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird.  Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.

Der Inhalt
Bezeichnungen sowie Hilfsmittel aus der Analysis - Kurven im IRn - Lokale Flächentheorie, insbes. Drehflächen, Regelflächen, Minimalflächen - Die innere Geometrie von Flächen - Riemannsche Mannigfaltigkeiten - Der Krümmungstensor - Räume konstanter Krümmung - Einstein-Räume - Lösungen zu Übungsaufgaben

Die Zielgruppen
Studierende der Mathematik und Physik ab dem 4. Semester, Studiengänge Bachelor, Master und Lehramt


Der Autor
Wolfgang Kühnel ist Professor am Mathematischen Institut der Universität Stuttgart.

 

 

Content Level » Upper undergraduate

Stichwörter » Einstein-Räume - Flächentheorie - Krümmung - Kurventheorie - Riemannsche Mannigfaltigkeiten - Satz von Gauß-Bonnet

Verwandte Fachbereiche » Geometrie & Topologie

Inhaltsverzeichnis 

Bezeichnungen sowie Hilfsmittel aus der Analysis.- Kurven im IRn.- Lokale Flächentheorie, insbes. Drehflächen, Regelflächen, Minimalflächen.- Die innere Geometrie von Flächen.- Riemannsche Mannigfaltigkeiten.- Der Krümmungstensor.- Räume konstanter Krümmung.- Einstein-Räume.- Lösungen zu Übungsaufgaben
.

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Differentialgeometrie .