Logo - springer
Slogan - springer

Springer Spektrum - Mathematik | Höhere Mathematik in Rezepten - Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten

Höhere Mathematik in Rezepten

Begriffe, Sätze und zahlreiche Beispiele in kurzen Lerneinheiten

Karpfinger, Christian

2014, XIX, 838 S. 251 Abb.

eBook
Information

Springer eBooks sind ausschließlich für den persönlichen Gebrauch bestimmt und werden ohne Kopierschutz verkauft (DRM-frei). Statt dessen sind sie mit einem personalisierten Wasserzeichen versehen. Sie können die Springer eBooks auf gängigen Endgeräten, wie beispielsweise Laptops, Tablets oder eReader, lesen.

Springer eBooks können mit Visa, Mastercard, American Express oder Paypal bezahlt werden.

Nach dem Kauf können Sie das eBook direkt downloaden. Ihr eBook ist außerdem in MySpringer gespeichert, so dass Sie Ihre eBooks jederzeit neu herunterladen können.

(net) Preis für USA

ISBN 978-3-642-37866-9

versehen mit digitalem Wasserzeichen, kein DRM

Erhältliche Formate: PDF

sofortiger Download nach Kauf


mehr Information zu Springer eBooks

add to marked items

$39.99
  • Das Verständnis kommt mit diesem Buch ganz von selbst durch das Tun 
  • Alle Themen der Mathematik, die Anwender in den ersten Semester wirklich benötigen, verständlich anhand konkreter Vorgehensweisen erklärt 
  • Verdauliche Happen: Jedes Kapitel für eine Vorlesungsdoppelstunde

Haben Sie schon einmal ein 3-Gänge-Menü anhand eines Rezepts gekocht? Das klappt im Allgemeinen ganz gut, auch wenn man kein großer Koch ist. Was das mit Mathematik zu tun hat? Na ja, man kann auch viele mathematische Probleme rezeptartig lösen: Brauchen Sie die Lösung einer Riccati'schen Differenzialgleichung oder die Singulärwertzerlegung einer Matrix? Schlagen Sie in diesem Buch nach, hier finden Sie ein Rezept dazu. Rezepte gibt es zu Problemen aus der

  • Analysis in einer und mehreren Variablen,
  • linearen Algebra,
  • Vektoranalysis,
  • Theorie zu Differenzialgleichungen, gewöhnlich und partiell,
  • Theorie der Integraltransformationen,
  • Funktionentheorie.

Wir haben versucht, diese Rezepte so gut und auch so verständlich wie möglich in diesem Buch zusammenzufassen.

Vielfach wird davon gesprochen, dass man Höhere Mathematik verstehen muss, um sie anwenden zu können. Wir zeigen in diesem Buch, dass das Verständnis auch ganz von selbst durch das Tun kommt: Kein Mensch lernt die Grammatik einer Sprache von vorne bis hinten, wenn er eine Sprache lernen will. Man lernt eine Sprache, indem man sich ein bisschen über die Grammatik informiert und dann loslegt; man muss sprechen, Fehler machen, auf Fehler hingewiesen werden, Beispielsätze und Rezepte kennen, häppchenweise Themen erarbeiten, dann klappt es. In der Höheren Mathematik ist es nicht anders.

Weitere Besonderheiten dieses Buches sind:

  • Die Einteilung der Höheren Mathematik in ca. 100 etwa gleich lange Kapitel. Jedes Kapitel behandelt etwa den Stoff einer 90-minütigen Vorlesung.
  • Zahlreiche Beispiele.
  • Viele Aufgaben, die Lösungen dazu findet man auf der Website zu diesem Buch bzw. in dem dazu gehörigen Arbeitsbuch.
  • Viele Probleme der Höheren Mathematik lassen sich mit dem Computer lösen. Wir geben stets an, wie es mit MATLAB® funktioniert.
  • Aufgrund der übersichtlichen Darstellung kann das Buch auch als kommentierte und mit zahlreichen Beispielen unterlegte Formelsammlung benutzt werden.

PD Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.

Content Level » Lower undergraduate

Stichwörter » Analysis - Ingenieurmathematik - Mathematik für Anwender - Prüfungsvorbereitung - lineare Algebra

Verwandte Fachbereiche » Algebra - Analysis - Mathematik

Inhaltsverzeichnis 

Vorwort.- 1 Sprechweisen, Symbole und Mengen.- 2 Die natürlichen, ganzen und rationalen Zahlen.- 3 Die reellen Zahlen.- 4 Maschinenzahlen.- 5 Polynome.- 6 Trigonometrische Funktionen.- 7 Komplexe Zahlen - Kartesische Koordinaten.- 8 Komplexe Zahlen – Polarkoordinaten.- 9 Lineare Gleichungssysteme.- 10 Rechnen mit Matrizen.- 11 LR-Zerlegung einer Matrix.- 12 Die Determinante.- 13 Vektorräume.- 14 Erzeugendensysteme und lineare (Un-)Abhängigkeit.- 15 Basen von Vektorräumen.- 16 Orthogonalität I.- 17 Orthogonalität II.- 18 Das lineare Ausgleichsproblem.- 19 Die QR-Zerlegung einer Matrix.- 20 Folgen.- 21 Berechnung von Grenzwerten von Folgen.- 22 Reihen.- 23 Abbildungen.- 24 Potenzreihen.- 25 Grenzwerte und Stetigkeit.- 26 Differentiation.- 27 Anwendungen der Differentialrechnung I.- 28 Anwendungen der Differentialrechnung II.- 29 Polynom- und Splineinterpolation.- 30 Integration I.- 31 Integration II.- 32 Uneigentliche Integrale.- 33 Separierbare und lineare Differentialgleichungen 1. Ordnung.- 34 Lineare Differentialgleichungen mit konstanten Koeffizienten.- 35 Einige besondere Typen von Differentialgleichungen.- 36 Numerik gewöhnlicher Differentialgleichungen I.- 37 Lineare Abbildungen und Darstellungsmatrizen.- 38 Basistransformation.- 39 Diagonalisierung - Eigenwerte und Eigenvektoren.- 40 Numerische Berechnung von Eigenwerten und Eigenvektoren.- 41 Quadriken.- 42 Schurzerlegung und Singulärwertzerlegung.- 43 Die Jordannormalform I.- 44 Die Jordannormalform II.- 45 Definitheit und Matrixnormen.- 46 Funktionen mehrerer Veränderlicher.- 47 Partielle Differentiation - Gradient, Hessematrix, Jacobimatrix.- 48 Anwendungen der partiellen Ableitungen.- 49 Extremwertbestimmung.- 50 Extremwertbestimmung unter Nebenbedingungen.- 51 Totale Differentiation, Differentialoperatoren.- 52 Implizite Funktionen.- 53 Koordinatentransformationen.- 54 Kurven I.- 55 Kurven II.- 56 Kurvenintegrale.- 57 Gradientenfelder.- 58 Bereichsintegrale.- 59 Die Transformationsformel.- 60 Flächen und Flächenintegrale.- 61 Integralsätze I.- 62 Integralsätze II.- 63 Allgemeines zu Differentialgleichungen.- 64 Die exakte Differentialgleichung.- 65 Lineare Differentialgleichungssysteme I.- 66 Lineare Differentialgleichungssysteme II.- 67 Lineare Differentialgleichungssysteme II.- 68 Randwertprobleme.- 69 Grundbegriffe der Numerik.- 70 Fixpunktiteration.- 71 Iterative Verfahren für lineare Gleichungssysteme.- 72 Optimierung.- 73 Numerik gewöhnlicher Differentialgleichungen II.- 74 Fourierreihen - Berechnung der Fourierkoeffzienten.- 75 Fourierreihen - Hintergründe, Sätze und Anwendung.- 76 Fouriertransformation I.- 77 Fouriertransformation II.- 78 Diskrete Fouriertransformation.- 79 Die Laplacetransformation.- 80 Holomorphe Funktionen.- 81 Komplexe Integration.- 82 Laurentreihen.- 83 Der Residuenkalkül.- 84 Konforme Abbildungen.- 85 Harmonische Funktionen und das Dirichlet'sche Randwertproblem.- 86 Partielle Differentialgleichungen 1. Ordnung.- 87 Partielle Differentialgleichungen 2. Ordnung – Allgemeines.- 88 Die Laplace- bzw. Poissongleichung.- 89 Die Wärmeleitungsgleichung.- 90 Die Wellengleichung.- Index.

Beliebte Inhalte dieser Publikation 

 

Articles

Dieses Buch auf Springerlink lesen

Service für dieses Buch

Neuerscheinungen

Registrieren Sie sich hier wenn Sie regelmäßig Informationen über neue Bücher erhalten wollen im Fachbereich Mathematik (allgemein).