Logo - springer
Slogan - springer

Social Sciences - Religious Studies | Infinite Regress Arguments

Infinite Regress Arguments

Series: Argumentation Library, Vol. 17

Gratton, Claude

2009, XII, 211p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$159.00

(net) price for USA

ISBN 978-90-481-3341-3

digitally watermarked, no DRM

Included Format: PDF and EPUB

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-90-481-3340-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$209.00

(net) price for USA

ISBN 978-94-007-3151-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • The first book to contribute to a theory of infinite regress arguments
  • Uncovers different kinds of infinite regresses used as premises
  • Identifies different kinds of infinite regress arguments
  • Suggests ways of improving our construction or evaluation of infinite regress arguments

Infinite regress arguments are part of a philosopher's tool kit of argumentation. But how sharp or strong is this tool? How effectively is it used? The typical presentation of infinite regress arguments throughout history is so succinct and has so many gaps that it is often unclear how an infinite regress is derived, and why an infinite regress is logically problematic, and as a result, it is often difficult to evaluate infinite regress arguments. These consequences of our customary way of using this tool indicate that there is a need for a theory to re-orient our practice.

My general approach to contribute to such a theory, consists of collecting and evaluating as many infinite regress arguments as possible, comparing and contrasting many of the formal and non-formal properties, looking for recurring patterns, and identifying the properties that appeared essential to those patterns. Two very general questions guided this work: (1) How are infinite regresses generated in infinite regress arguments? (2) How do infinite regresses logically function as premises in an argument? In answering these questions I clarify the notion of an infinite regress; identify different logical forms of infinite regresses; describe different kinds of infinite regress arguments; distinguish the rhetoric from the logic in infinite regress arguments; and suggest ways of improving our discussion and our practice of constructing and evaluating these arguments.

Content Level » Research

Keywords » David Hume - Plato - benign regress - empirical logic - formal logic - infinite regress - logic - philosophy - reason - reasoning - regress - regress arguments - regression - superflous regress - vicious regress

Related subjects » Logic & Philosophy of Language - Philosophy - Religious Studies

Table of contents 

Introduction.- Chapter 1 What is an infinite regress argument? 1.1 The general structure of infinite regress arguments. 1.2 Boundaries of an infinite regress argument. 1.2.1 Boundaries when an infinite regress is vicious. 1.2.2 Boundaries when an infinite regress is benign. 1.3 A hypothesis H about the nature of infinite regresses. 1.4 Testing hypothesis H. 1.5 Testing hypothesis H with nonconcatenating regresses. 1.6 Other features of infinite regresses. 1.7 The necessary quantity of terms and relations. 1.8 The relation of terms and objects of infinite regresses. 1.9 Applications of hypothesis H to various example. 1.9.1 Plato’s couch. 1.9.2 Teachers taught by teachers. 1.9.3 Gods giving meaning to Gods. 1.9.4 Maps of maps. 1.9.5 Lewis Carroll’s 'What the Tortoise said to Achilles'. 1.10 Logical functions of infinite regresses. 1.10.1 Benign regresses. 1.10.2 Superfluous regresses. 1.11 Cogency and benign regresses. Chapter 2 Formal and nonformal logic of infinite concatenating regresses. 2.1 Recurring terms, loops, and regress formulas. 2.2 Applications. 2.3 Recurring terms, loops, and infinite concatenating regresses. 2.4 Relations and loops. 2.5 Blocking all possible loops. 2.6 Are irreflexivity, or asymmetry or transitivity necessary to block loops? 2.7 Concatenating relations in regress formulas. 2.8 Directions of infinite concatenating regresses. 2.9 Non-formal considerations in regress formulas. 2.9.1 Relations and their implications. 2.9.2 Stated properties of terms. 2.9.3 Unstated properties of terms. 2.10 Summary. 2.11 Evaluative questions. Chapter 3 Viciousness. 3.1 Are there inherently vicious regresses? 3.2 Clark on viciousness. 3.3 Johnstone and viciousness. 3.4 Uncompletability and viciousness. 3.5 Occam's Razor: ontological extravagance. 3.6 Blocking some vicious regresses. 3.6.1 Hume. 3.6.2 Miller. 3.6.3 Laurence and Margolis. 3.6.4 The general form of the argument for blocking regresses.Chapter 4 Circular definitions and circular explanations. 4.1 A formal derivation of infinite regresses from circular definitions. 4.2 Infinitely many infinite regresses. 4.3 Semantic considerations. 4.4 Regresses independent of circularity. 4.5 The viciousness of infinite regresses entailed by circular definitions. The derivation of infinite regresses from circular explanations. Chapter 5 Infinite regresses of recurring questions. 5.1 Recurring questions and the derivation of infinite regresses. 5.2 Recurring questions and vicious regresses. Chapter 6 Infinite regresses of recurring problems and responses. 6.1 Plato’s aviary in the Theatetus. 6.2 McTaggart's discontinual regress. 6.3 Mackie's discontinual regress. 6.4 Armstrong’s continual regress. 6.5 A continual regress in a version of Cantor’s diagonal method. 6.6 Lehrer’s non-continual regress. 6.7 Evaluative questions.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Philosophy of Religion.