Logo - springer
Slogan - springer

Social Sciences | Bayesian Item Response Modeling - Theory and Applications

Bayesian Item Response Modeling

Theory and Applications

Fox, Jean-Paul

2010, XIV, 313p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$89.99

(net) price for USA

ISBN 978-1-4419-0742-4

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$119.00

(net) price for USA

ISBN 978-1-4419-0741-7

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$119.00

(net) price for USA

ISBN 978-1-4614-2606-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Serves as a handbook for measurement specialists and a textbook for students on the Bayesian approach to modern test theory.
  • Acts as a guide to the authors’ computer software implementations that will be made available via a website.
  • Includes software implementations available in S-Plus and R, with new functions built on Fortran code linked to the S-plus and R environments, for time efficiency.
This book presents a thorough treatment and unified coverage of Bayesian item response modeling with applications in a variety of disciplines, including education, medicine, psychology, and sociology. Breakthroughs in computing technology have made the Bayesian approach particularly useful for many response modeling problems. Free from computational constraints, realistic and state-of-the-art latent variable response models are considered for complex assessment and survey data to solve real-world problems. The Bayesian framework described provides a unified approach for modeling and inference, dealing with (nondata) prior information and information across multiple data sources. The book discusses methods for analyzing item response data and the complex relationships commonly associated with human response behavior and features • Self-contained introduction to Bayesian item response modeling and a coverage of extending standard models to handle complex assessment data • A thorough overview of Bayesian estimation and testing methods for item response models, where MCMC methods are emphasized • Numerous examples that cover a wide range of application areas, including education, medicine, psychology, and sociology • Datasets and software (S+, R, and WinBUGS code) of the models and methods presented in the book are available on www.jean-paulfox.com Bayesian Item Response Modeling is an excellent book for research professionals, including applied statisticians, psychometricians, and social scientists who analyze item response data from a Bayesian perspective. It is a guide to the growing area of Bayesian response modeling for researchers and graduate students, and will also serve them as a good reference. Jean-Paul Fox is Associate Professor of Measurement and Data Analysis, University of Twente, The Netherlands. His main research activities are in several areas of Bayesian response modeling. Dr. Fox has published numerous articles in the areas of Bayesian item response analysis, statistical methods for analyzing multivariate categorical response data, and nonlinear mixed effects models.

Content Level » Professional/practitioner

Keywords » Excel - Item - MCMC - bayesian - bayesian statistics - hierarchical modeling - item response theory - mixed effects - nonlinear modeling - test theory

Related subjects » Education & Language - Marketing - Probability Theory and Stochastic Processes - Psychology - Social Sciences - Social Sciences & Law

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Methodology of the Social Sciences.

Additional information