Series: Fundamental Theories of Physics, Vol. 168
Fernández, Virginia Velma, Rodrigues, Waldyr A.
2010, X, 154 p.
Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-3-642-13589-7
digitally watermarked, no DRM
Included Format: PDF
download immediately after purchase
Hardcover version
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-3-642-13588-0
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
Softcover (also known as softback) version.
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-3-642-26485-6
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
Addressing graduate students and researchers in theoretical physics and mathematics, this book presents a new formulation of the theory of gravity. In the new approach the gravitational field has the same ontology as the electromagnetic, strong, and weak fields. In other words it is a physical field living in Minkowski spacetime. Some necessary new mathematical concepts are introduced and carefully explained. Then they are used to describe the deformation of geometries, the key to describing the gravitational field as a plastic deformation of the Lorentz vacuum. It emerges after further analysis that the theory provides trustworthy energy-momentum and angular momentum conservation laws, a feature that is normally lacking in General Relativity.
Content Level » Research
Keywords » Gravity - Minkowski space - Potential - RMS - Relativity - Theoretical physics - general relativity
Related subjects » Algebra - Cosmology - Geometry & Topology - Theoretical, Mathematical & Computational Physics
Get alerted on new Springer publications in the subject area of Classical and Quantum Gravitation, Relativity Theory.