Skip to main content
Book cover

Semiclassical Approach to Mesoscopic Systems

Classical Trajectory Correlations and Wave Interference

  • Book
  • © 2012

Overview

  • Gives a modern approach
  • Features Ehrenfest-time effects in mesoscopic systems
  • Integrates basics and new results
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Tracts in Modern Physics (STMP, volume 245)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This volume describes mesoscopic systems with classically chaotic dynamics using semiclassical methods which combine elements of classical dynamics and quantum interference effects. Experiments and numerical studies show that Random Matrix Theory (RMT) explains physical properties of these systems well. This was conjectured more than 25 years ago by Bohigas, Giannoni and Schmit for the spectral properties. Since then, it has been a challenge to understand this connection analytically. 
The author offers his readers a clearly-written and up-to-date treatment of the topics covered. He extends previous semiclassical approaches that treated spectral and conductance properties. He shows that RMT results can in general only be obtained semiclassically when taking into account classical configurations not considered previously, for example those containing multiply traversed periodic orbits.

Furthermore, semiclassics is capable of describing effects beyond RMT. In this context he studies the effect of a non-zero Ehrenfest time, which is the minimal time needed for an initially spatially localized wave packet to show interference. He derives its signature on several quantities characterizing mesoscopic systems, e. g. dc and ac conductance, dc conductance variance, n-pair correlation functions of scattering matrices and the gap in the density of states of Andreev billiards.

Reviews

From the reviews:

“Quantum chaos has been the subject of intensive theoretical and experimental investigations in the last forty years. … This is the subject of the present book, largely based upon the personal research activity of the author. … this book may be useful and interesting to the reader working on semi-classical approaches to quantum problems and chaotic phenomena in mesoscopic systems. Moreover, the beginner will also benefit from reading this book, thanks to the exhaustive bibliography given at the end of each chapter.” (Giorgio Cattapan, Mathematical Reviews, Issue 2012 m)

Authors and Affiliations

  • Institut I - Theoretische Physik, Universität Regensburg, Regensburg, Germany

    Daniel Waltner

About the author

Daniel Waltner  (Dr. rer. nat. in a few days)
Universität Regensburg
Institut I - Theoretische Physik
93040 Regensburg
Germany
Daniel.Waltner@physik.uni-r.de

Bibliographic Information

Publish with us