Skip to main content
Book cover

Quantum Mechanics for Pedestrians 2: Applications and Extensions

  • Textbook
  • © 2014

Overview

  • Written by an experienced lecturer with a great insight into and understanding of quantum mechanics, and a gift for explaining it
  • Combines the standard topics with new knowledge and developments, such as quantum information and neutrino oscillation
  • Discusses further advanced topics in the appendix, including many exercises with solutions
  • Includes supplementary material: sn.pub/extras

Part of the book series: Undergraduate Lecture Notes in Physics (ULNP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 chapters)

  1. Applications and Extensions

Keywords

About this book

The two-volume textbook Quantum Mechanics for Pedestrians provides an introduction to the basics of nonrelativistic quantum mechanics. Originally written as a course for students of science education, the book addresses all those science students and others who are looking for a reasonably simple, fresh and modern introduction to the field. 

The basic principles of quantum mechanics are presented in the first volume. This second volume discusses applications and extensions to more complex problems. In addition to topics traditionally dealt with in quantum mechanics texts, such as symmetries or many-body problems, here also issues of current interest such as entanglement, Bell's inequalities, decoherence and various aspects of quantum information are treated in detail. Furthermore, questions of the basis of quantum mechanics and epistemological issues are discussed explicitly; these are relevant e.g. to the realism debate. A chapter on the interpretations of quantum mechanics completes this volume. 


The necessary mathematical tools are introduced step by step; in the appendix, the most relevant mathematics is compiled in compact form. More advanced topics such as the Lenz vector, Hardy's experiment and Shor's algorithm are treated in more detail in the appendix. As an essential aid to learning and teaching, 130 exercises are included, most of them with their solutions.

Authors and Affiliations

  • Institut für Physik, Universität Oldenburg, Oldenburg, Germany

    Jochen Pade

About the author

Jochen Pade studied physics in Freiburg (Germany), where he received his PhD in theoretical physics in 1978. Since 1980, he has been a lecturer at the Carl von Ossietzky University Oldenburg (Germany). His research interests are: Theoretical physics, didactics and popularisation of science.

Bibliographic Information

Publish with us