Logo - springer
Slogan - springer

Physics - Quantum Physics | Quantum Transport in Semiconductor Submicron Structures

Quantum Transport in Semiconductor Submicron Structures

Proceedings of the NATO Advanced Study Institute, Bad Lauterberg, Germany, August 20-31, 1995

Series: Nato Science Series E:, Vol. 326

Kramer, B. (Ed.)

1996, XIV, 386 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$279.00

(net) price for USA

ISBN 978-94-009-1760-6

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$359.00

(net) price for USA

ISBN 978-0-7923-4190-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$359.00

(net) price for USA

ISBN 978-94-010-7287-8

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • About this book

The articles in this book have been selected from the lectures of a NATO Advanced Study Institute held at Bad Lauterberg (Germany) in August 1995. Internationally well-known researchers in the field of mesoscopic quantum physics provide insight into the fundamental physics underlying the mesoscopic transport phenomena in structured semiconductor inversion layers. In addition, some of the most recent achievements are reported in contributed papers. The aim of the volume is not to give an overview over the field. Instead, emphasis is on interaction and correlation phenomena that turn out to be of increasing importance for the understanding of the phenomena in the quantum Hall regime, and in the transport through quantum dots. The present status of the quantum Hall experiments and theory is reviewed. As a "key example" for non-Fermi liquid behavior the Luttinger liquid is introduced, including some of the most recent developments. It is not only of importance for the fractional quantum Hall effect, but also for the understanding of transport in quantum wires. Furthermore, the chaotic and the correlation aspects of the transport in quantum dot systems are described. The status of the experimental work in the area of persistent currents in semiconductor systems is outlined. The construction of one of the first single-electron transistors is reported. The theoretical approach to mesoscopic transport, presently a most active area, is treated, and some aspects of time-dependent transport phenomena are also discussed.

Content Level » Research

Keywords » Quantum Hall effect - condensed matter - nanostructure - quantum dot - semiconductor - simulation - spectroscopy - superlattice - tunneling

Related subjects » Materials - Optical & Electronic Materials - Optics & Lasers - Quantum Physics

Table of contents 

Preface. 1. Introduction. Quantum Transport in Nano- Structured Semiconductors: A Survey; B. Kramer. 2. The Quantum Hall Effect. Quantum Hall Effect Experiments; R.J. Haug. Incompressibilis Ergo Sum: Skyrmions and Edge States in the Quantum Hall Effect; A.H. MacDonald. 3. Interaction and Correlations. The Luttinger Liquid: An Introduction; M. Sassetti. Friedel Oscillations in Luttinger Liquids; R. Egger, H. Grabert. Transport through a Single-Band Wire Connected to Measuring Leads; I. Safi, H.J. Schulz. Delocalization of Certain Two-Particle States by Short Range Interactions in Anderson Insulators; K. Frahm, et al. 4. Quantum Dots. Transport in Electric and Magnetic Lateral Superlattices; D. Weiss, et al. How to Measure Persistent Currents in a Mesoscopic Ring; G. Cernicchiaro, et al. Theory of Quantum Dot Transport; D. Weinmann. Phase Transitions in Artificial Atoms; O. Klein, et al. Coulomb Blockade in a Silicon Mosset; D. Abusch-Magder, et al. 5. Mesoscopic Current Conduction. Basic Elements of Electrical Conduction; M. Büttiker, T. Christen. The Landauer Resistivity Dipole; W. Zwerger. Electron-Phonon Scattering Rates in 2D Systems: GaAs/AlGaAs 2DEGs Below 0.5K; A. Mittal. 6. Time Dependent Phenomena. Shot-Noise Suppression in the Single-Electron Tunneling Regime; H. Birk, et al. Resonant Tunneling through Nanostructures in AC Fields; G. Platero, et al. Corrections to the Drude Conductivity in Systems under Microwave Irradiation; T. Brandes. Simulations of Partition Noise Suppression; R.C. Liu, et al. Electron Spin Resonance in the Domain of the Fractional Quantum Hall Effect; R. Meisels, et al. Author Index. Subject Index.

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Quantum Physics.