Logo - springer
Slogan - springer

Physics - Quantum Physics | Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals

Gottfried, Kurt, Yan, Tung-Mow

1st ed. was originally published by Benjamin, 1996, ISBN 0-8053-3332-0, now with Westview Press, ISBN 0-201-40633-0.

2nd ed. 2003, XVIII, 622 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$49.95

(net) price for USA

ISBN 978-0-387-21623-2

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$124.00

(net) price for USA

ISBN 978-0-387-95576-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$69.95

(net) price for USA

ISBN 978-0-387-22023-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

This classic text provides a comprehensive exposition of the concepts and techniques of quantum mechanics. The phenomena treated are sufficiently simple to allow the student to readily assess the validity of the models so that attention is not deflected from the heart of the subject. To that end, the book concentrates on systems that can either be solved exactly or be handled by well-controlled, plausible approximations. With few exceptions, this means systems with a small number of degrees of freedom. The exceptions are many—electron atoms, the electromagnetic field and the Dirac equation. The inclusion of the last two topics reflects the belief that every physicist should now have some knowledge of these cornerstones of modern physics.

This new edition has been completely revised and rewritten throughout, but retains the clarity and readability of the first edition.

Born in Vienna, Kurt Gottfried emigrated to Canada in 1939 and received his Ph.D. in theoretical physics from the Massachusetts Institute of Technology in 1955. He is a professor emeritus of physics at Cornell University, and had previously been at Harvard University and at CERN in Geneva, Switzerland. He is the coauthor of Concepts of Particle Physics (with V.F. Weisskopf) and of Crisis Stability and Nuclear War. Gottfried has done research in both nuclear and particle physics; he has an active interest in arms control and human rights and is a founder and currently the Chair of the Union of Concerned Scientists.

Tung-Mow Yan, originally from Taiwan, received his Ph.D. in theoretical physics from Harvard University in 1968. He has been a member of the Cornell University faculty since 1970 after spending two years as a research associate at the Stanford Linear Accelerator Center. He has conducted research in many areas of elementary particle physics.

Content Level » Graduate

Keywords » Dirac equation - elementary particle physics - particle physics - quantum mechanics - relativistic quantum mechanics

Related subjects » Quantum Physics

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Quantum Physics.