Skip to main content

Relativistic Dissipative Hydrodynamic Description of the Quark-Gluon Plasma

  • Book
  • © 2014

Overview

  • Provides a full second-order formulation of relativistic dissipative hydrodynamics with linear cross terms that satisfy Onsager reciprocal relations
  • Shows the effects of shear viscosity, bulk viscosity and baryon diffusion found to be important in quantitative analyses of particle spectra from the expanding QGP
  • Nominated as an outstanding Ph.D. thesis by the University of Tokyo's Physics Department in 2012
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This thesis presents theoretical and numerical studies on phenomenological description of the quark–gluon plasma (QGP), a many-body system of elementary particles.

The author formulates a causal theory of hydrodynamics for systems with net charges from the law of increasing entropy and a momentum expansion method. The derived equation results can be applied not only to collider physics, but also to the early universe and ultra-cold atoms.

The author also develops novel off-equilibrium hydrodynamic models for the longitudinal expansion of the QGP on the basis of these equations. Numerical estimations show that convection and entropy production during the hydrodynamic evolution are key to explaining excessive charged particle production, recently observed at the Large Hadron Collider. Furthermore, the analyses at finite baryon density indicate that the energy available for QGP production is larger than the amount conventionally assumed.

Authors and Affiliations

  • RIKEN, RIKEN BNL Research Center, New York, USA

    Akihiko Monnai

About the author

Dr.Akihiko Monnai RIKEN-BNL Research Center, Nishina Center, RIKEN 2-1 Hirosawa,Wako-shi, Saitama 351-0198, Japan Tel: +81-48-462-1226 (Ext. 3449).

Bibliographic Information

Publish with us