Logo - springer
Slogan - springer

Physics - Particle and Nuclear Physics | Lecture Notes on Principles of Plasma Processing

Lecture Notes on Principles of Plasma Processing

Chen, Francis F., Chang, Jane P.

2003, XI, 208 p. With online files/update.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4615-0181-7

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-0-306-47497-2

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes.

This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.

Content Level » Research

Keywords » Plasma - Vakuuminjektionsverfahren - chemical engineering - chemistry - color - dielectrics - plasma physics - semiconductor - simulation

Related subjects » Industrial Chemistry and Chemical Engineering - Optical & Electronic Materials - Particle and Nuclear Physics

Table of contents 

Preface. Plasma Physics. Part A1: Introduction to Plasma Science. I. What is plasma? II.Plasma fundamentals. Part A2: Introduction to Gas Discharges. III. Gas discharge fundamentals. Part A3: Plasma Sources I. IV. Introduction to plasma sources. Part A4: Plasma Sources II. V. RIE discharges. Plasma Chemistry. Part A5: Plasma Sources III. VI. ECR sources. Part A6: Plasma Sources IV. VIII. Helicon wave sources and HDPs. IX. Discharge equilibrium. Part A7: Plasma Diagnostics. X. Introduction. XI. Remote diagnostics. Langmuir probes. XIII. Other local diagnostics. Part B1: Overview of Plasma Processing in Microelectronics Fabrication. I. Plasma processing. II. Applications in microelectronics. Part B2: Kinetic Theory and Collisions. I. Kinetic theory. II. Practical gas kinetic models and macroscopic properties. III. Collision dynamics. Part B3: Atomic Collisions and Spectra. I. Atomic energy levels. II. Atomic collisions. IV. Inelastic collisions. Part B4: Molecular Collisions and Spectra. I. Molecular energy levels. II. Selection rule for optimal emission of molecules. IV Heavy particle collisions. V. Gas phase kinetics. Part B5: Plasma Diagnostics. I. Optical emission spectography. II. Laser induced fluorescence. III. Laser Interferometry. IV. Full-wafer interferometry. V. Mass spectrometry. Part B6: Plasma Surface Kinetics. I. Plasma chemistry. II. Surface reactions. III. Loading. IV. Selectivity. V. Detailed reaction modeling. Part B7: Feature Evolution and Modeling. I. Fundamentals of feature evolution in plasma etching. II. Predictive modeling. III. Mechanisms of profile evolution. IV. Profile simulation. V. Plasma damage. Epilogue: Current Problems in Semiconductor Processing. I. Front-end challenges. II. Back-end challenges. III. Patterning nanometer features. IV. Deep reactive etch for MEMS. V. Plasma-induced damage. VI. Species control in plasma reactors.

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Nuclear Physics, Heavy Ions, Hadrons.