Logo - springer
Slogan - springer

Physics - Optics & Lasers | Electron Correlation in New Materials and Nanosystems

Electron Correlation in New Materials and Nanosystems

Proceedings of the NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems, held in Yalta, Ukraine, 19-23 September 2005

Series: Nato Science Series II:, Vol. 241

Scharnberg, Kurt, Kruchinin, Sergei (Eds.)

2007, XII, 438 p.

Available Formats:

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.


(net) price for USA

ISBN 978-1-4020-5659-8

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase

learn more about Springer eBooks

add to marked items


Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4020-5657-4

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items


Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.


(net) price for USA

ISBN 978-1-4020-5658-1

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days

add to marked items

  • About this book

The articles collected in this book cover a wide range of materials with extraordinary superconducting and magnetic properties. For many of the materials studied, strong electronic correlations provide a link between these two phenomena which were long thought to be highly antagonistic. The book reports both the progress in our understanding of fundamental physical processes and the advances made towards the development of devices. The materials studied come in a variety of forms and shapes from bulk to epitaxial films, nano- and heterostructures down to those involving single molecules and double quantum dots. In some cases the structuring serves the study of bulk properties. More often it is the change of these properties with nanostructuring and the properties of different materials in close proximity with each other that are of key interest because of possible application of these materials or heterostructures to quantum computing and spintronics.

Content Level » Research

Keywords » Doping - Fulleren - Fullerene - Magnetic field - PED - PES - REM - STEM - Semiconductor - Superconductor - quantum dot - spintronics

Related subjects » Applied & Technical Physics - Materials - Nanotechnology - Optics & Lasers - Quantum Physics

Table of contents 

Preface.- Part I. Quantum nanodevices.- Transport properties of fullerene nanodevices; A.Fuijwara et al.- Nanoscale studies on metal-organic interfaces; N. Chandrasekhar.- Electron-electron interaction in carbon nanostructures; A.I.Romanenko et al.- Single-level molecular rectifier; E.Petrov.- Magnetic unipolar features in the conductivity of point contacts; Yu.G.Naidyuk et al.- Part II. Superconductivity.- II.1 Magnesium diboride and the two-band scenario.- Superconductivity in MgB2 and its related materials ; S. Akutawa et al.- Feshbach shape resonance of the interband pairing in superlattices; A.Bianconi et al.- Magnetic and microwave properties of the two-gap superconductor MgB2; T. Dahm.- Free energy functional and critical magnetic fields in magnesium diboride; T. Örd et al.- Nanosize two-gap superconductivity; H. Nagao et al.- Exact solution of two-band superconductivity in ultrasmall grains; H. Kawabe et al.- II.2 Cuprate and other unconventional superconductors.- Experimental evidence for a transition to BCS superconductivity in overdoped cuprates; G. Deutscher.- Experiments using Josephson contacts between high-Tc and low-Tc superconductors; Ariando et al.- Anisotropic resonance peak in orthorhombic superconductors; D. Manske, I. Eremin.- Dynamical spin susceptibility in the underdoped cuprate superconductors: DDW state and influence of orthorhombicity; J.-P. Ismer et al.- Disorder effects in d-wave superconductors; C. T. Rieck et al.- First principles calculations of effective exchange integrals for copper oxides and isoelectronic species; K. Yamaguchi et al.- Microscopic evidence of the FFLO state in the strongly-correlated superconductor CeCoIn5 probed by 115In-NMR; K. Kumagai et al.- Models of superconductivity in Sr2RuO4; T.Dahm et al.- High-Tc superconductivity of cuprates and ruthenates; J. D. Dow et al.- Doping dependence of cupratecoherence length, supercarrier effective mass, and penetration depth in a two-component scenario; N. Kristoffel et al.- Order parameter collective modes in unconventional superconductors; P. Brusov, P. Brusov; Vortex matter and temperature dependence of the Ginzburg-Landau phenomenological lengths in lead nanowires; G. Stenuit et al.- Angular dimensional crossover in superconductor - normal metal multilayers; S. L. Prischepa et al.- Andreev states and spontaneous currents in superconductor-ferromagnet proximity systems; J. F. Annett et al.- Part III. Spintronics.-Kondo effect in mesoscopic systems; A.N.Rubtsov et al.- 1/f noise and two-level systems in Josephson qubits; A. Shnirman et al.- Single-electron pump: device characterization and linear-response measurements; R.Schäfer et al.- Zero-bias conductance through side-coupled double quantum dots; J.Bonca, R.Žitko.- Spin-orbital ordering and giant magnetoresistance in cobalt oxides: intrinsic magnetic-field-effect transistor; A.N. Lavrov et al.- Double perovskites: half-metal oxides for spintronics; L.Alff.- A possible model for the experimental problem of high Tc ferromagnetism in the dilute magnetic semiconductor (Ga,Mn)N; H.Hori et al.- Large magnetoresistance effects in novel layered Rare Earth Halides; R.K.Kremer et al.- Subject Index.- Author Index.-

Popular Content within this publication 



Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Classical Electrodynamics, Wave Phenomena.