Logo - springer
Slogan - springer

Physics - Condensed Matter Physics | First Principles Modelling of Shape Memory Alloys - Molecular Dynamics Simulations

First Principles Modelling of Shape Memory Alloys

Molecular Dynamics Simulations

Kastner, Oliver

2012, XVI, 176 p.

Available Formats:
eBook
Information

Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.

You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.

After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.

 
$99.00

(net) price for USA

ISBN 978-3-642-28619-3

digitally watermarked, no DRM

Included Format: PDF

download immediately after purchase


learn more about Springer eBooks

add to marked items

Hardcover
Information

Hardcover version

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-642-28618-6

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

Softcover
Information

Softcover (also known as softback) version.

You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.

Standard shipping is free of charge for individual customers.

 
$129.00

(net) price for USA

ISBN 978-3-642-44361-9

free shipping for individuals worldwide

usually dispatched within 3 to 5 business days


add to marked items

  • Excellent starting point for students and scientists entering this emerging field
  • Includes introductory sections of broad applicability in both Molecular Dynamics and modelling of binary crystalline systems
  • Based on the author's own simple but powerful model, which has won acclaim for its scientific impact
  • Contains new results that will stimulate further progress in the field
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices.
The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties.
The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and their students.

Content Level » Research

Keywords » computational research - lattice transformation thermodynamics - martensitic transformations - molecular dynamics simulations - shape memory alloys

Related subjects » Classical Continuum Physics - Complexity - Condensed Matter Physics - Special types of Materials - Theoretical, Mathematical & Computational Physics

Table of contents / Preface / Sample pages 

Popular Content within this publication 

 

Articles

Read this Book on Springerlink

Services for this book

New Book Alert

Get alerted on new Springer publications in the subject area of Phase Transitions and Multiphase Systems.