Series: Graduate Texts in Physics
Bonamente, Massimiliano
2013, XV, 301 p. 39 illus., 2 illus. in color.
Springer eBooks may be purchased by end-customers only and are sold without copy protection (DRM free). Instead, all eBooks include personalized watermarks. This means you can read the Springer eBooks across numerous devices such as Laptops, eReaders, and tablets.
You can pay for Springer eBooks with Visa, Mastercard, American Express or Paypal.
After the purchase you can directly download the eBook file or read it online in our Springer eBook Reader. Furthermore your eBook will be stored in your MySpringer account. So you can always re-download your eBooks.
(net)
price for USA
ISBN 978-1-4614-7984-0
digitally watermarked, no DRM
Included Format: PDF and EPUB
download immediately after purchase
Hardcover version
You can pay for Springer Books with Visa, Mastercard, American Express or Paypal.
Standard shipping is free of charge for individual customers.
(net)
price for USA
ISBN 978-1-4614-7983-3
free shipping for individuals worldwide
usually dispatched within 3 to 5 business days
Statistics and Analysis of Scientific Data covers the foundations of probability theory and statistics, and a number of numerical and analytical methods that are essential for the present-day analyst of scientific data. Topics covered include probability theory, distribution functions of statistics, fits to two-dimensional datasheets and parameter estimation, Monte Carlo methods and Markov chains. Equal attention is paid to the theory and its practical application, and results from classic experiments in various fields are used to illustrate the importance of statistics in the analysis of scientific data.
The main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and proactive use of the material for practical applications. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data, as well as exercises and examples to aid the students' understanding of the topic.
Content Level » Graduate
Keywords » 2-variable dataset - Monte Carlo Markov chain methods - Probability and applied statistics textbook - data analysis methods - distribution functions of statistics - numerical Monte Carlo methods - probability textbook - random variable theories of probability - statistical applications physics - statistical data textbook
Related subjects » Complexity - Probability Theory and Stochastic Processes - Statistical Theory and Methods - Theoretical, Mathematical & Computational Physics
Theory of Probability.- Random Variables and Their Distribution.- Sum and Functions of Random Variables.- Estimate of Mean and Variance and Confidence Intervals.- Distribution Function of Statistics and Hypothesis Testing.- Maximum Likelihood Fit to a Two-Variable Dataset.- Goodness of Fit and Parameter Uncertainty.- Comparison Between Models.- Monte Carlo Methods.- Markov Chains and Monte Carlo Markov Chains.- A: Numerical Tables.- B: Solutions.
Get alerted on new Springer publications in the subject area of Statistical Physics, Dynamical Systems and Complexity.